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With societal trends towards increasing age at starting a pregnancy attempt, many

women are concerned about achieving conception before the onset of infertility, which pre-

cedes menopause. Couples failing to conceive a pregnancy within 12 months are classified

as clinically infertile, and may be recommended for assisted reproductive therapy (ART).

Because many ART procedures are expensive and may convey an increased risk of adverse

outcomes for the offspring, it is advantageous to decrease time to pregnancy by natural

methods. One possibility is to intentionally time intercourse during the days of the men-

strual cycle having the highest conception probabilities. This article proposes a Bayesian

decision theoretic approach for searching for optimal rules for timing intercourse based on

cycle day, secretions and other information. Good rules result in high conception probabil-

ities while requiring minimal targeted intercourse. A biologically-based statistical model is

used to relate cycle day and biomarkers to the conception probability. A stochastic search

procedure is then developed to search for rules with high expected utility, and the methods

are applied to data from a recent Italian study.

Key Words: Bayesian model selection; Conception probability; Decision theory; Gibbs

sampler; Loss function; Stochastic search; Time to pregnancy

1 Introduction

1.1 Motivation and Background

There has been a worldwide trend in industrialized countries towards delaying childbearing

until later in a woman’s reproductive years. This trend has been accompanied by growing

anxiety among women that they may have waited too long to start a pregnancy attempt.

Such anxiety has been heightened by reports of declines in fecundability starting in the
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late 20s for women and in the late 30s for men [1,2]. In this climate, couples attempting

pregnancy often become increasingly concerned as the months pass without a positive

pregnancy test, sometimes pressing their clinicians for help even after 3 to 6 months of

attempting. Couples are diagnosed as clinically infertile after attempting a year with

no success. However, even in the absence of known causes of infertility, couples may be

recommended for assisted reproductive therapy (ART) before the attempt time exceeds a

year.

ART procedures can be extremely costly and may convey an increased risk of adverse

pregnancy and developmental outcomes. The data on long term adverse outcomes tend

to be limited, because technology in this area changes more rapidly than children develop

into adulthood. For couples who could otherwise not conceive naturally, ART provides a

valuable option. However, data suggest that most couples in their 20s and 30s who do

not conceive within the first year of attempting could conceive naturally if attempting for

longer [2,3]. The statistical explanation is that there is a high degree of heterogeneity

among couples in their fecundability, the per menstrual cycle probability of conception.

This heterogeneity leads to a highly skewed time to pregnancy distribution. As the attempt

time increases, the distribution of fecundability among couples still at risk will increasingly

concentrate on low values. However, since the proportion of sterile couples is very low (e.g.,

1-3%) [4], most couples not conceiving by a year are fecund.

Unfortunately, anxiety about infertility drives many couples to seek infertility treatment

even after a relatively modest attempt time. Methods for intentionally timing intercourse

during the most fertile days of the menstrual cycle provide a valuable alternative to couples

concerned about a long time to pregnancy. Numerous rules have been proposed based on

self-monitoring of the menstrual cycle and symptoms of the fertile days [5]. Most rules

are based on the identification of the ovulation day and the fertile window around it.
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Traditional and widely used means of identifying the day of ovulation and the fertile

window include basal body temperature [6,7,8] and calendar calculations [9]. Newer means

include serial ovarian ultrasound, monitoring of hormones in urine [10,11,12], monitoring

of salivary electrolytes [13], and fertility charting of vaginal discharge [14,15,16].

It is unclear which one of the available rules is the best available option. In addition,

given that there has been no systematic search for optimal rules among the huge number

of possibilities, there may be other rules yet to be defined that perform better than those

yet proposed. A good rule for intercourse behavior is one that maximizes the probabil-

ity of conception in a menstrual cycle, while minimizing the required days of intercourse.

Although there are not many individuals who would characterize a high intercourse fre-

quency as a loss, most would agree that it is appealing to limit the number of days on

which intercourse is required. Requiring intercourse on specific days may be stressful for

many couples.

1.2 Italian Study of Daily Fecundability

In order to assess the performance of rules for timing intercourse, it is first necessary

to accurately model day-specific fecundability across the menstrual cycle, allowing for

heterogeneity with measured and unmeasured predictors. Day-specific fecundability is

defined here as the probability of conception in a menstrual cycle with a single act of

intercourse on a specific day relative to ovulation. As noted by Barrett and Marshall

[17] and by Wilcox et al. [18], because most menstrual cycles have multiple intercourse

acts during the potentially fertile interval, it is necessary to assume a statistical model to

estimate day-specific probabilities. Most results reported in the literature have been based

on estimating probabilities in a narrow window around an estimate of the ovulation day
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using the model of Schwartz et al. [19] and extensions [e.g. 20].

Unfortunately, as our goal is to assess the performance of rules for prospectively iden-

tifying fertile days on the basis of home monitoring of biomarkers, such an approach is not

appropriate. What is needed is a statistical model for relating cycle day and biomarkers,

such as basal body temperature and characteristics of vulvar secretions, to the day-specific

probabilities of conception. Then, given intercourse on particular days of the cycle having

particular biomarker levels, one can obtain a cycle-specific probability of conception, under

the simplifying assumption that intercourse does not affect the biomarkers. Depending on

the rule being used, the intercourse days will be altered, resulting in an altered conception

probability.

In order to develop and fit such a model, it is necessary to have very complete data

on biomarkers and intercourse days for a large number of menstrual cycles at risk of

conception. Unfortunately, such data are difficult to obtain, as previous studies either

did not collect home biomarkers [18] or collected information only for a mid-cycle interval

[21]. For this reason, we focus on data from a new Italian study of users of the Billing’s

Ovulation method of natural family planning [22,23].

The study enrolled 193 women recruited from four Italian centers providing services

on fertility awareness and natural family planning. Women enrolled were between 18 and

40 years of age, were married or in stable relationship, had at least one menses after

cessation of breastfeeding or after delivery, were not taking hormonal medications or drugs

affecting fertility and were experienced in the use of the Billings Ovulation Method [24] of

natural family planning. The participants were followed prospectively during one or more

menstrual cycles, as they collected detailed daily records of vulvar observations of the

cervical mucus symptom, and recorded the days during which intercourse and menstrual

bleeding occurred. The women had received training at the study centers on how to identify
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different types of sensation and mucus.

Teachers classified each day of the cycle according to a five-point scale according to the

type of mucus symptom described by women. As discussed in Colombo et al. [22], the two

most fertile types of mucus symptom are very similar clinically. Therefore, we collapsed

these into one category and used the four point scale indicating: (1) dry, (2) a humid or

damp feeling, (3) thick, creamy, elastic, whitish moist mucus symptom, and (4) slippery,

stretchy, watery, clear mucus. Higher scores indicate higher levels of estrogenic-type mucus

and hence conditions more conducive to sperm survival and transport. Therefore, the

conception probability is expected to increase monotonically with mucus score [23,25]

Focusing on menstrual cycles having complete records of mucus and excluding cycles in

which mucus was not recorded on a day with intercourse, 2536 menstrual cycles from 191

women have been collected, with 161 of these cycles (from 132 women) ending in a clinical

pregnancy. The average age in years of the women and men was 29.9 (standard deviation,

4.15) and 32.6 (4.8), and women contributed an average of 13.3 (12.66) cycles to the data

set.

In Section 2, we propose a statistical model for the day-specific probabilities of con-

ception across the menstrual cycle, utilizing information on timing of intercourse and

biomarkers. We develop a Markov chain Monte Carlo (MCMC) algorithm for posterior

computation in this non-linear hierarchical model. Using this algorithm, we can obtain

draws from the posterior predictive distribution for new couples following different rules

for timing intercourse. In Section 3, we develop a Bayesian decision theoretic approach

and Monte Carlo algorithm for searching for optimal rules. Section 4 applies the MCMC

algorithm of Section 2 to the Italian study and summaries results. Section 5 summarizes

results from the rule search, and Section 6 discusses the results.
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2 Modeling Daily Fecundability

2.1 Hierarchical nonlinear model

An intercourse act can result in conception only if it occurs in a mid-cycle window ending

on the day of ovulation [18,26]. Thus, time-varying predictors impact the probability of

conception only when one or more acts of non-contracepting intercourse occur during the

fertile interval. With this biological motivation, we divide each cycle into three windows:

(1) an early infertile window I1 = [1, τ1] during which biomarkers are considered unin-

formative; (2) a mid-cycle potentially fecund window I2 = [τ1 + 1, τ2] during which daily

predictors can have a varying effect on the probability of conception; and (3) a late infertile

window I3ij = [τ2 + 1, Dij], with Dij denoting the length of cycle j from couple i. The

term infertile is used to refer to a low, but possibly non-zero, conception probability. The

changepoints, τ1 and τ2, are treated as unknown, but constant across couples and cycles

(for simplicity and identifiability). Because conception cycles have no end, we truncate the

third interval at Dij = D = 40 days for conception cycles.

Suppose that data are collected from n couples, with couple i contributing ni cycles

(i = 1, . . . , n). For cycle j from couple i, let vij = (vij1, . . . , vijDij
)′ be a vector of intercourse

indicators, with vijd = 1 denoting intercourse on day d and vijd = 0 otherwise, and let

yij = 1 indicate conception and yij = 0 otherwise.

First, suppose that only daily intercourse records over the cycle are available to predict

conception. Following a suggestion of Peter Armitage, Barrett and Marshall [17] proposed

a model for the conception probability in a cycle based on the assumption that batches of

sperm introduced into the reproductive tract on different days commingle and then com-

pete independently to fertilize the ovum. This model was later generalized by a number
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of authors to allow covariate effects and heterogeneity among couples. For example, Zhou

and Weinberg [27] proposed an estimating equations-based approach. They also demon-

strated in their paper that intercourse on the previous day does not significantly reduce

the conception probability, so that it is appropriate to ignore abstinence time.

Motivated by the identifiability and computational issues presented in [28], we rely on a

modification of the Dunson and Stanford [28] model. Their model focused on day-specific

probabilities in a narrow fecund interval ending on the day of ovulation, so incorporated

distinct probabilities for each day. To reduce dimensionality in modeling of conception

probabilities across the entire menstrual cycle, we assign a different baseline parameter for

each of the three intervals I1, I2, I3ij resulting in the baseline model:

P{yij = 1 | ξi,vij} = 1−
Dij∏
d=1

(1− pid)
vijd = 1− exp

−ξi

3∑
t=1

∑
d∈Itij

vijdλt

 , (1)

where I1ij = I1, I2ij = I2, pid = 1− exp
{
−ξi

∑3
t=1 λt1(d∈Itij)

}
is the day-specific probability

of conception given intercourse on only day d, λt (t = 1, 2, 3) is the window-specific baseline

parameter and ξi is a couple-specific random-effect measuring the ith couple’s biologic

fecundity, with ξi < 1 representing low fecundity, ξi = 1 for typical fecundity, and ξi > 1

for above average fecundity. To allow fecundity to vary continuously in the population, we

let ξi ∼ G (ν−1, ν−1), where G(a, b) denotes the gamma density with mean a/b and variance

a/b2, so that ν = var(ξi).

Consider now the case in which Mij = [m′
ij1, . . . ,m

′
ijDij

]′, a Dij×q time-varying covari-

ate matrix for cycle j from couple i, is available. A parsimonious extension of (1) would

allow the day-specific probabilities to vary by a multiplicative factor depending on the level

of the predictors on the day of intercourse:

P{yij = 1 | ξi,vij,Mij} = 1− exp

−ξi

3∑
t=1

∑
d∈Itij

vijdλt exp
{
(m′

ijdβ)1(d∈I2)

} , (2)
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where β is a vector of regression coefficients.

It is standard practice in epidemiologic studies to categorize exposures, behavioral

factors and biomarkers in order to simplify the analysis and presentation of the results.

Therefore, we focus on a single M -level day specific categorical predictor wijd ∈ 1, 2, . . . ,M

(the generalization to consider multiple categorical predictors is straightforward), corre-

sponding to the covariate matrix having rows mijd = [1(wijd=2), 1(wijd=3), . . . , 1(wijd=M)]′, for

d = 1, 2, . . . , Dij. We assign each day d from cycle i, j to one of K = M + 2 categories:

Cijd = 1 if d ∈ I1, Cijd = wijd + 1 if d ∈ I2, and Cijd = K if d ∈ I3ij.

Let xijk =
∑Dij

d=1 1(Cijd=k)vijd denote the number of days in the jth cycle of couple i

that have reported intercourse and that are in the kth category (k = 1, . . . , K), with

xij = (xij1, . . . , xijK)′. The probability of conception is expressed as

P{yij = 1 |ξi,xij,Mij} = 1− exp

{
−ξi

K∑
k=1

xijkλk

}
, (3)

where λ1, λ2, λK are the baseline parameters characterizing the probabilities of conception

in the 1st, 2nd, and 3rd interval, respectively, and λk = exp(βk−2) for k = 3, . . . , K − 1

allow changes from λ2 across categories of the time-varying predictor.

Note that model (3) makes a monotonicity assumption in which additional intercourse

acts in a menstrual cycle can only increase the probability of conception. Although sperm

concentration has been shown to decrease for 1-3 days following ejaculation (see for in-

stance [29]), the magnitude of this decrease is not sufficient to invalidate the monotonicity

assumption. In fact, Zhou and Weinberg [27] showed that the occurrence of intercourse on

adjacent days did not significantly reduce the day-specific conception probability.

Model (3) modifies Dunson and Stanford [28] to allow random changepoints in the cy-

cle to accommodate data lacking a reliable marker of ovulation day. Previously, Dominik

and Chen [31] proposed to model a per cycle day pregnancy curve, avoiding the estima-
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tion of the ovulation day. Dominik and Chen do not account explicitly for heterogeneity

among couples in their pregnancy probabilities, instead using a robust variance estimator.

Hence, because less fecund couples may contribute more cycles to a data set, the resulting

pregnancy probabilities will be biased downwards. In addition, it is necessary to model

heterogeneity if one wants to predict conception probabilities for new couples following

different rules.

For tractability, we assume that the biomarker data and the random effects will not

be altered by changing the intercourse data through targeted intercourse. This allows

us to predict couple-specific changes in the conception probability with modifications to

intercourse timing and frequency without imposing a model on the biomarker trajectories.

In order to predict probabilities of conception for a new couple, we obtain the marginal

probability of conception integrating out the couple-specific random-effect ξi. For model (3)

we have the simple closed form Pr(yij = 1 | xij,Mij) = 1− (1 + ν
∑K

k=1 xijkλk)
1/ν .

2.2 MCMC algorithm for posterior computation

Following a Bayesian approach, we modify the efficient auxiliary variables Markov chain

Monte Carlo algorithm proposed by Dunson and Stanford [28]. In fact, expression (3)

has an equivalent representation as an underlying Poisson variable model, with yij =

1(
∑K

k=1
Zijk>0) and Zijk conditionally-independent Poisson latent variables with mean E(Zijk) =

ξi xijk λk. Full conditional posterior distributions are then easily obtained for each of the

parameters and latent variables.

Conditionally conjugate priors are chosen for each of the parameters, with discrete

uniform priors for τ1 and τ2, gamma priors for λ1, λ2, λK , ν−1 and a mixture of a point mass

at one (with probability π) and a gamma density, possibly truncated below or above by one,
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for the γm = λm+1/λm (m = 1, . . . ,M − 1) parameters quantifying the effect of increasing,

in the second interval, the categorical predictor by one unit from m to m + 1. This

parameterization allows for selecting predictors of the day-specific conception probability

and may improve efficiency by incorporating constraints on the values of the multiplicative

increments {γk}. For example, focusing on ordered categorical predictors, if the covariate

has a potentially beneficial impact on the probability of conception and an adverse effect

can be ruled out a priori, then the constraint γk ≥ 1 would be appropriate, and included

in the prior by truncating below by one the gamma distribution in the mixture. The joint

prior density for all the parameters is summarized as follows

π(θ) = π(τ1, τ2, ν, λ1, λ2, λK , γ1, . . . , γM−1)
= U(τ1; aτ1, bτ1) · U(τ2; aτ2, bτ2)·

G(ν; c1, c2)
{∏

k∈{1,2,K} G(λk; a0k, b0k)
}
·{∏M−1

h=1 I1 − GAh
(γh; π0h, ah, bh)

} (4)

where U(·; a, b) denotes the Discrete Uniform probability mass function between a and b,

G(·; a, b) denotes the Gamma density, and I1 − GA(·; π, a, b) denotes the density consisting

of the mixture of a point mass at one (with probability π) and a Gamma density truncated

to the region A which is typically chosen to be IR+, [1, +∞) or (0, 1], to correspond to

no constraint, positive effect and negative effect, respectively. Posterior summaries of the

parameters and of the latent variable are obtained using the MCMC algorithm outlined in

Appendix I.

3 Searching for Rules for Timing Intercourse

3.1 Formalizing the problem

Our goal is to choose good rules for timing intercourse on the basis of cycle day and the

time-varying biomarker for couples attempting conception. In particular, from a conceptual
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viewpoint, a good rule is one which is simple to apply and shortens the time to pregnancy

while limiting the number of days on which intercourse is prescribed. Our formal approach

to the problem of identifying good rules is to first choose a list of simple rules as potential

candidates. We then specify a utility function, which rewards a high conception probabil-

ity while penalizing number of prescribed intercourse acts. Because this utility function

necessarily involves many unknown parameters, we follow the approach of calculating the

expected posterior utility averaged across the posterior distribution of the unknown pa-

rameters [32,33]. The Bayes optimal rule among those considered is then the one with the

highest expected utility.

Let Mk = (M1, . . . ,Mk)
′ ∈ Mk = [1, 2, . . . ,M ]k denote a vector of 1 − M ordinal

markers for cycle days 1 to k. Then, by definition, a rule R is a collection of functions

R = {Rk, k = 1, . . . , D}, with Rk : Mk → [0, 1]. In particular, letting xk = Rk(Mk),

given the markers Mk leading up to day k of the cycle, rule R either recommends that the

couple has intercourse on that day (xk = 1) or else leaves the decision up to the couple’s

desire (xk = 0). For example, a simple calendar-based rule that prescribes intercourse only

within the 10-17 day interval, would have Rk(Mk) = 1(k∈[10,17]), so that the marker data

would be ignored.

In practice, there may be a large number of rules, even when one focuses on simple

rules based on calendar and the history of a single biomarker. We let R denote the set of

rules under consideration. The utility function for a rule R is defined as follows:

uδ(θ,R,M) = Pr(y = 1|θ,M, R)− δB(M, R), (5)

where Pr(y = 1|θ,M, R) is the probability of conception given parameters θ, marker data

M and rule R, B(M, R) is the number of days of required intercourse recommended by

rule R given marker data M, and δ is a known penalty. Note that we have not conditioned
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on intercourse in the component for the conception probability, because the rule implies

a particular vector of intercourse indicators given the woman’s marker data, assuming for

simplicity that intercourse only occurs on recommended days (extensions are straightfor-

ward). Here, δ quantifies the decrease in pregnancy probability one is willing to face in

exchange for one less day of required intercourse. Hence, this utility function rewards a

high conception probability for a rule, while penalizing prescribed intercourse days.

For a new couple i = n+1 wanting to limit their time to conception without knowledge

of their marker data, the Bayes optimal rule to select is formally:

R∗ = arg max
R∈R

Uδ(R) with

Uδ(R) =
∫

uδ(θ,R,M) π(θ | data) π(M | data) dθ dM,

where π(θ | data) is the posterior distribution of the parameters in model (3) given the

data, and π(M | data) is the posterior predictive distribution of the marker data M for a

new subject. The posterior distribution π(θ | data) depends on the marker levels for the

actual study subjects, whereas conceptually the marker data M, over which the utility

is averaged, is for a hypothetical new subject. Note that samples from the posterior of

the parameters can be obtained using the MCMC algorithm described in Section 2.2 and

the appendix. However, as we have not modeled the marker data due to the difficulty of

formulating a realistic model for the complex ordered categorical time series, samples from

π(M | data) are not available.

We recommend plug-in approximations to the following high-dimensional integrals:

Pr(y = 1 | θ,R) =
∫

Pr(y = 1 | θ,M, R) π(M | data) dM,

B(R) =
∫

B(M, R)π(M | data) dM. (6)

In particular, we use the empirical distribution of the marker data in the sample in place
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of the predictive distribution, and rely on

P̂r(y = 1|θ,R,data) =
1

n

n∑
i=1

 1

ni

ni∑
j=1

1−
(

1 + ν
K∑

k=1

x
(R)
ijk λk

)1/ν

 , (7)

where x
(R)
ijk denotes the potential number of intercourse days in the jth cycle of couple i

falling in category k given use of rule R conditional on that couple’s biomarker data. To

clarify, x
(R)
ijk is the value of xijk that would have been observed had couple i followed rule R

in cycle j. The term in (·) including the exponent is the marginal conception probability

integrating out the couple specific random effect, but conditioning on the intercourse and

marker data. Note that we can similarly obtain a plug-in estimate for BR by averaging the

intercourse days required by rule R across the data for subjects in the sample. By using

this plug-in approximation we eliminate the dependence on M of the utility function and

of the expected utility, since in this last function, the posterior distribution of θ depends

on the marker levels of a hypothetical new subject and not on the marker data observed

for the actual study subjects.

To calculate the expected posterior utility for a given rule R, all that remains is to

integrate out θ across the posterior distribution. This can be accomplished by simply

using the MCMC draws and averaging. Note that due to the approach we have used it is

not necessarily to rerun the MCMC algorithm for each new rule. Instead we can reuse the

samples from a single run each time we calculate the expected posterior utility for a rule.

The use of Monte Carlo approximations is a common technique in many simulation-based

optimal design approaches. For example, Bielza, Müller and Rios Insua [34] proposed a

generic Monte Carlo method to calculate maximum expected utility in a decision analysis.

Müller and Parmigiani [35] used simulation to evaluate expected utility integrals exploiting

the continuity of the utility function to reduce computational effort. Carlin, Kadane and

Gelfand [36] used a similar strategy for sequential decision problems. Refer also to Müller,
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Sansò and Iorio [37].

When the list of rules is moderate, one can simply cycle through each rule, estimat-

ing the expected posterior utility in each case, choosing the one with the highest value.

However, when the decision space R is very large, one cannot perform calculates for all

possible rules. As an alternative to simulated annealing [38], we recommend a simple it-

erated hill-climber algorithm with a stochastic perturbation to avoid local maxima. The

idea is to choose the steepest direction and to follow it until, in this direction, a maximum

is reached. Once there, the algorithm looks for another direction with steepest increase of

the expected utility function and starts again from there. In order to avoid to stopping

at a local maximum, the algorithm, every time it needs to change direction, evaluates the

objective function in one or more randomly chosen points over the entire space R. By com-

paring these values with the one proposed by the new direction, the algorithm identifies

the higher posterior integrated utility from where to start again looking for the steepest

direction. Details for the algorithm are outlined in the Appendix II.

4 Application to Italian Study

In this section we apply the approach described to data presented in Section 1.2. The

time-varying marker is chosen as the 1-4 mucus score, which is recorded on each day of

each cycle in the study. We obtain K = 6 categories for the model (3). Although we

expect the conception probabilities to be low in the first and third interval and in the

second interval on dry days, we choose a diffuse prior for the baseline parameters λ1, λ2, λ6

by letting a0k = b0k = 0.01, k = 1, 2, 6 as parameters of the gamma distribution.

It is reasonable to assume that the probabilities are nondecreasing with increases in

the mucus score for days of the second interval. We incorporate this constraint by letting
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Parameter Mode Mean Median SD 95% Credible Interval
τ1 5 5.96525 5.0000 1.1653 [5, 8]
τ2 21 20.92396 21.0000 1.0284 [19, 23]
λ1 0.00178 0.0000 0.0055 [0.00, 0.02]
λ2 0.01052 0.0093 0.0065 [0.001, 0.027]
γ1 6.66306 3.8479 11.1830 [1.20, 37.01]
γ2 2.12287 1.6683 1.4273 [1.00, 6.11]
γ3 14.27453 13.3324 5.8750 [5.71, 28.88]
λ6 0.00042 0.0000 0.0014 [0.000, 0.005]
ν 1.82630 1.8016 0.3492 [1.20,2.58]

Table 1: Posterior summaries of the parameters of the model fitted on the Italian study

data

Ah = [1, +∞) within the prior for γ’s introduced in (4). We let π0h = 0.51/3 for h = 1, 2, 3

to assign 0.5 prior probability to the global null hypothesis of no association between the

mucus score and the conception probabilities, and we let ah = bh = 0.01, h = 1, . . . , 3 to

allow a high degree of uncertainty in the values of γh under the alternative hypothesis.

Considering the magnitude of heterogeneity estimated in Dunson and Zhou [20] using a

different data set and model, we choose c1 = 1 and c2 = 2 to specify a weakly informative

prior for the frailty variance ν. Finally, we let τ1 vary uniformly within [5, 12], while letting

τ2 vary uniformly within [17, 25]. These choices were suggested by previous research on

calendar methods.

We ran the MCMC algorithm for 12800 iterations, discarding the first 500 iterations

as a burn-in. Convergence was rapid and mixing was excellent, and these burn-in and

collection intervals were deemed sufficient. Posterior summaries of the parameters are pre-

sented in Table 1. While the posterior distribution τ2 is symmetric around the day 21, the

distribution of τ1 is asymmetric, with mean of about 6, 95% credible interval of [5, 8] and

median and mode in 5, which was also the lower day allowed by the prior distribution. This

result is not surprising, given that the prior was chosen based on day-specific probabilities
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Category Probability of conception
k Time interval Mucus Type Mean SD 95% Credible Interval
1 ≤ τ1 0.0017 0.0053 0.0000 - 0.0191
2 (τ1, τ2] 1 dry 0.0103 0.0063 0.0014 - 0.0258

3 2
humid or
damp feeling 0.0381 0.0170 0.0115 - 0.0764

4 3
thick, creamy,
elastic, whitish
moist mucus symptom

0.0643 0.0216 0.0316 - 0.1189

5 4
slippery, stretchy,
watery, clear mucus 0.4077 0.0520 0.3059 - 0.5094

6 > τ2 0.0004 0.0014 0.0000 - 0.0048

Table 2: Posterior summaries of probabilities of conception according to the phase of the

cycle and mucus score

estimated for calendar methods that do not rely on mucus. By incorporating mucus in-

formation, we naturally estimate an earlier transition to the mid-cycle potentially fecund

interval. This early transition allows for the subset of cycles with early ovulation in which

the fecund interval starts soon after menses. Cycles with later ovulation will typically have

low mucus scores early in the cycle, leading to low day-specific conception probabilities for

these days.

Although we used a prior that assigned a moderately high probability to γh = 1.0

(h = 1, 2, 3) in order to adjust for a possibly inflated type I error rate due to multiple

testing, consistently with earlier results [25] there was clear evidence in the data in favor of

γh > 1.0. We also obtain posterior distributions for the probabilities of conception given a

single act of intercourse in the cycle, occurring in one of the three phases. For intercourse

acts in the second phase, we stratify by type of mucus on the intercourse day. The resulting

estimates are shown in Table 2.

In the mid-cycle interval, the probability is quite low for days with no secretions (0.01)

and with a mucus score of 2 (0.038) or 3 (0.064), but then increases dramatically to 0.41 on
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days with most fertile-type mucus. These differences are all statistically significant, having

posterior probabilities of no difference < 0.05. On days in the first and third phase, the

probability of conception is essentially zero (0.002 and 0.0004).

5 Results of the Rule Search

We compared a wide class of rules based on calendar and mucus. We focus on rules

prescribing intercourse on days within a mid-cycle window, allowing the last day of the

first window φ1 and of the second window, φ2, to vary between 5 and 12 and between 17

and 25, respectively. We included the following suggestions for intercourse: (1) every day,

(2) on days with mucus score > 1, (3) mucus score > 2, (4) mucus score > 3, (5) mucus

score > 1 on that day or day before, (6) mucus score > 2 on that day or day before, and (7)

mucus score > 3 on that day or day before. We index these groups of rules, respectively,

r = 1, . . . , 7, resulting in 504 different rules.

For each rule, we considered different patterns of intercourse acts. For the first and the

third interval we suppose that couples (a) never have intercourse and (b) have intercourse

on one seventh of days, randomly chosen. In the mid-cycle window we suppose that couples

follow the rule, having intercourse every day required.

For each scenario we consider the utility function (5) with a range of values for the

penalty coefficient δ. We choose BR in (5) to be the average number of intercourse days

that each rule prescribes, while other intercourse acts during the cycle decided by the

couple are not considered as a loss. We used the algorithm outlined in Section 3.1 to

identify the optimal rule by finding the maximum of the approximated utility function (5)

using the Markov Chain obtained in fitting the model. To reduce computational time, we

thinned the chain using only 3137 iterations, one every four elements of the chain.
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Table 3: Optimal rules and utility function for couples that strictly follow the proposed rule.

Intercourse every day required by the rule in the mid-cycle interval and never intercourse

in the others intervals.
Rule parameters Utility function

Interval Interval Mucus Probability Number of

δ Start End type of conception prescribed Ûδ(R)
φ1 + 1 φ2 intercourse days

0 6 25 no 0.687 20.00 0.687
0.003 8 21 no 0.681 14.00 0.639
0.01 10 18 no 0.647 9.00 0.557
0.03 11 17 no 0.615 7.00 0.405
0.05 13 17 no 0.537 5.00 0.287
0.07 13 17 3, 4 0.469 3.92 0.195
0.1 13 17 4 0.347 2.42 0.105

Optimal decisions and the utility functions for couples strictly following the rule, for

different values of δ, are presented in Table 3 considering couples with no intercourse in

the cycle except when prescribed by the rule, and in Table 4, considering couples having

intercourse about once a week when not differently prescribed by the rule. The first line

of both Tables gives, simply, the probability of conception without an explicit penalty for

intercourse days. By maximizing this probability we obtain for both the scenarios a value

of 0.69 corresponding to the rule requiring intercourse every day between days 6 and 25.

A more realistic frequency of intercourse is obtained, when couples choose different values

of δ. In this case, if the penalty is small, optimal rules are characterized by the calendar

component of the rule, while, for a high penalty the optimal rule of both scenarios prescribes

intercourse considering both calendar and mucus observations.

Table 5 captures the uncertainty about Tables 3 and 4 by reporting some percentiles

of the distribution of conception probabilities obtained using each optimal rule. For both

scenarios, variability and skewness increase with δ, indicating that among couples applying

a medium-high penalty to intercourse frequency, a relevant percentage of not conceiving
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Table 4: Optimal rules and utility function for couples that strictly follow the proposed

rule. Intercourse every day required by the rule in the mid-cycle interval and 1/7th of days

in the other intervals
Rule parameters Utility function

Interval Interval Mucus Probability Number of

δ Start End type of conception prescribed Ûδ(R)
φ1 + 1 φ2 intercourse days

0 6 25 no 0.688 20.00 0.688
0.003 8 21 no 0.683 14.00 0.641
0.01 10 18 no 0.654 9.00 0.564
0.03 12 17 no 0.605 6.00 0.425
0.05 13 17 2, 3, 4 0.546 4.45 0.323
0.055 13 17 3, 4 0.525 4.05 0.302
0.1 13 17 4 0.452 2.79 0.173

couples is still present. The last line of Table 5, indicated with δ = ∞, gives the percentiles

of the probability of conception when no rule is used and a frequency of intercourse of one

seventh of days is supposed.

6 Discussion

This article has described a Bayesian decision theoretic approach for searching for op-

timal rules for timing intercourse in a cycle. The best rule maximizes the probability

of conception while minimizing the number of intercourse days required. Probabilities

of conception are estimated by relating biomarkers to the conception probability using a

biologically-based statistical model assuming no reliable marker of ovulation is available.

Previously cervical mucus has been used [e.g. 5,21,22] as a good marker of ovulation, but

measurement error in identifying ovulation day using mucus data can lead to difficulties in

interpreting effects of mucus as a predictor of conception probabilities. In agreement with

recent studies [22,23,25] showing that mucus is an important predictor of the day-specific
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Table 5: Percentiles from the distribution of the probabilities of conception for the optimal

rules for couples strictly following the rule
Percentile

Scenario δ 0.05 0.10 0.25 0.50 0.75 0.90 0.95
0 0.511 0.589 0.660 0.721 0.761 0.784 0.800

mid-cycle interval 0.003 0.502 0.583 0.655 0.717 0.748 0.778 0.791
intercourse every day 0.01 0.445 0.509 0.632 0.685 0.718 0.759 0.773

0.03 0.264 0.461 0.581 0.644 0.712 0.737 0.756
first and third interval 0.05 0.134 0.201 0.467 0.573 0.679 0.710 0.710
never intercourse 0.07 0.023 0.069 0.417 0.560 0.633 0.679 0.710

0.1 0.000 0.000 0.060 0.422 0.560 0.632 0.676
0 0.511 0.589 0.660 0.721 0.761 0.784 0.800

mid-cycle interval 0.003 0.502 0.587 0.655 0.717 0.748 0.779 0.791
intercourse every day 0.01 0.448 0.555 0.639 0.688 0.737 0.759 0.774

0.03 0.240 0.451 0.574 0.644 0.711 0.737 0.742
first and third interval 0.05 0.127 0.228 0.469 0.586 0.679 0.712 0.722
intercourse 1/7th of days 0.055 0.079 0.169 0.449 0.575 0.676 0.710 0.716

0.1 0.031 0.070 0.417 0.554 0.630 0.679 0.692
∞ 0.000 0.011 0.060 0.229 0.433 0.560 0.572

conception probabilities, we estimated that on one day within a mid-cycle window between

days 7 and 21, if most-fertile type mucus is observed, the conception probability is 40 times

higher than on a day with no noticeable secretions, while outside the window conception

probabilities are effectively 0.

A stochastic search procedure has then been developed to search for rules with high

expected utility. Using a Bayesian decision approach, we found that simple rules based on

increasing the frequency of intercourse on days within a mid-cycle interval having mucus

score above a threshold, have high theoretical effectiveness. As in any complex MCMC

simulation, the main limitation of the proposed method is the computationally intensive

implementation, even if the algorithm of Section 3.1 has been introduced. Another limita-

tion is related to the fact that we assume that there is one single utility function for every

couple, with known trade-offs between possibly competing goals, however, in our case this

assumption is reasonable since it involves choices of couples, which are, usually, defined a
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priori.

We considered a wide set of simple rules based only on calendar and mucus, but the

same procedure can be applied to compare more complex rules, such as the ones described

in Stanford, White and Hatasaka [5] or proposed by Natural Family Planning centers.

Most of these rules and the ones we considered, focus on using a decision rule at a single

time point. From the standpoint of minimizing a couple’s time to conception, it may be

better to consider a sequential rule that uses data collected in past menstrual cycles. Our

procedure can be applied to search for good sequential rules, but such rules may be difficult

to implement for couples, involving substantial training and record keeping.

One of the major advantages of optimizing the timing of intercourse may be the ability

to condense the time required before making the diagnosis of infertility, such that appro-

priate further evaluation can be pursued in a timely manner when necessary. Following the

optimal rule selected using the proposed combination of calendar and mucus, results in a

50% reduction in the time to pregnancy on average. There is an even greater improvement

for couples of below average fecundity at risk of being diagnosed as infertile. Our results

confirm previous findings [5,39] and support the suggestion by Hilgers [40] that with timed

intercourse, a diagnosis of infertility can be established in 6 months.

Finally we note that our procedure could also be used by couples attempting to avoid

conception using fertility awareness methods. A loss function can be defined in order to

identify rules having a low pregnancy rate with a penalty for large numbers of abstinence

days. The proposed procedure could also be used in comparing rules that utilize additional

information, such as age of the woman or using hormone data obtained from fertility

monitors. Potentially, there may be certain rules that work well for some couples but not

for others. For example, the optimal mid-cycle interval may vary depending on whether

a woman has long or short cycles and how regular they are. Also mucus types can have
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different effects on the probability of conception in different women and in different cycles

of the same woman. Incorporating such woman-specific information into the rule selection

process should improve the performance of the rule, and potentially software could be

developed that outputs the optimal rule when the user inputs their cycle history, age, and

other characteristics, such as desired intercourse frequency.

References

1. Dunson DB, Colombo B, Baird DD. Changes with age in the level and duration of

fertility in the menstrual cycle. Human Reproduction 2002; 17: 1399–1403.

2. Dunson DB, Baird DD, Colombo B. Increased infertility with age in men and women.

Obstetrics & Gynecology 2004; 103: 51–56.

3. Bongaarts JM. A Method for the Estimation of Fecundability. Demography 1975;12:

645.

4. Trussell J, Wilson C. Sterility in a Population with Natural Fertility. Population

Studies 1985; 39: 269–285.

5. Stanford JB, White GL, Hatasaka H. Timing Intercourse to Achieve Pregnancy:

Current Evidence. Obstetrics and Gynecology 2003; 100: 1333–1341.

6. Doering GK. Ein Beitrag zur Frage der periodischen Fruchtbarkeit der Frau auf

Grund der Erfahrungen bei der Zyklusanalyse mit Hilfe der Temperaturmessung.

Geburtshilfe und Frauenheilkunde 1950; 10: 515–521.

7. Doering GK. Bestimmung der unfruchtbahren Tage im Zyklus der Frau. Fortschritte

der Medizin - Sondedruck; 1986; 104(46): 941–942.

23



8. Marshall J. A field trial of the basal body-temperature method of regulating births

The Lancet 1968; 2: 8–10.

9. Ogino K. Konzeptionstermin des Weibes und seine Anwendung in der Praxis. Zen-
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Appendix I

Details for Implementing MCMC Algorithm of model in Section 2.1

Step 1. Sample from the full conditional distribution of Zij =
∑K

k=1 XijkZijk by setting

Zij = 0 if Yij = 0 and otherwise sampling sequentially from

π(Zij|Yij = 1, θ, ξ, data) = Poisson

{
ξi

K∑
k=1

Xijkλk

}
truncated so that Zij > 0,
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π(Zij1, . . . , ZijK |Zij, Yij, θ, ξ, data) = Multinomial

(
Zij;

ξiXij1λ1

ξi
∑K

k=1 Xijkλk

, . . . ,
ξiXijKλK

ξi
∑K

k=1 Xijkλk

)

Step 2. Sample λ1, λ2, λK from their conjugate full conditional distribution:

π(λk|Z[X≥1], θ(−λk), ξ, data) = G

λk; a0k +
∑

ij:Xijk≥1

Zijk, b0k +
∑

i,j:Xijk≥1

ξi

k∏
h=1

γh

 ,

where Z[X≥1] = {Zijk : Xijk≥1} and we integrate out {Zijk : Xijk = 0}.

Step 3. Sample γ1, γ2, . . . , γM−1 from their conjugate full conditional distributions:

π(γh|Z[X≥1], θ(−γh), ξ, data) = I1 − G[1,∞)(γh; π̃h, ãh, b̃h),

where ãh = ah +
∑

i,j,k:Xijk≥1 1(h<k)Zijk, b̃h = bh +
∑

i,j,k:Xijk≥1 1(h<k)ξiλk
∏k

l:l 6=h γl,

π̃h =
π0h exp

{
−∑i,j,k:Xijk≥1 1(h<k)ξiλk

∏k
l:l 6=h γl

}
π0h exp

{
−∑i,j,k:Xijk≥1 1(h<k)ξiλk

∏k
l:l 6=h γl

}
+ (1− π0h)

C(ah,bh)

C(ãh,b̃h)

1−F (1;ãh,b̃h)
1−F (1;ah,bh)

Step 4. Sample ξi, for i ∈ 1, . . . , n, from its full conditional distribution, which is

π(ξi|Z[X≥1], θ, data) = G ( ξi; ν
−1 +

∑
j,k:Xijk≥1

Zijk,

ν−1 +
∑

j,k:Xijk≥1

Xijkλk

(
k∏

h=2

γh

)1(1<k<K)
 ,

Step 5. Update ν using a Metropolis step.

Step 6. Sample τ1 and τ2 from its full conditional distribution, which is Multinomial for τ1

with probability of each element t ∈ (aτ1, bτ1)

P (τ1 = t|θ(−τ1), ξ, data) =
L(y|θ(−τ1), ξ, τ1 = t)∑bτ1

s=aτ1
L(y|θ, ξ, τ2, τ1 = s)

and for τ2 with probability of each element t ∈ (aτ2, bτ2)

P (τ2 = t|θ(−τ2), ξ, data) =
L(y|θ(−τ2), ξ, τ2 = t)∑bτ2

s=aτ2
L(y|θ, ξ, τ1, τ2 = s)
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where L(y|θ, ξ) is the Likelihood function

L(y|θ, ξ) =
∏
ij

exp

−
Xijkλk

(
k∏

h=2

γh

)1(1<k<K)
Yij=0

1− exp

−
Xijkλk

(
k∏

h=2

γh

)1(1<k<K)


Yij=1

Step 7. Repeat steps 1-6 until apparent convergence and calculate posterior summaries

based on a large number of additional iterations.

Appendix II

Algorithm for selecting decisions with lowest posterior risk

among a high dimensional set of candidates

1. Initialization:

(a) t:=0

(b) Evaluate the posterior expected utility U(·) for a first parameter vector R of

r discrete elements

2. Cycle for j = 1, 2, . . . until convergence:

(a) select all new points in the neighborhood of R, that is:

cycle for each element of the parameter vector, i = 1, 2, . . . , r

(i) obtain a new parameter vector moving only one element along one di-

rection, R′[i] := R[i] + 1

(ii) evaluate the posterior expected utility U ′
i(R

′)

(iii) update the parameters vector moving only one element along the other

direction, R′′[i] := R[i]− 1
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(iv) evaluate the posterior expected utility U ′′
i (R′′)

(b) in order to avoid to stack in local maxima, obtain r new parameter vectors

R′′′
1 , . . . , R′′′

r at random and evaluate the posterior expected utility function

U ′′′
1 , . . . , U ′′′

r

(c) select R∗ from the set of new parameters vectors (R′
1, . . . , R

′
r, R

′′
1, . . . , R

′′
r , R

′′′
1 , . . . , R′′′

r )

such that U(R∗) is maximum.

(d) if U(R∗) > U(R) update R := R∗ else stop.
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