REVIEW

TIMING IN THE CEREBELLUM: OSCILLATIONS AND RESONANCE IN THE GRANULAR LAYER

E. D'ANGELO,a* S. K. E. KOEKKOEK,b,c P. LOMBARDO,a S. SOLINAS,a E. ROS,d J. GARRIDO,d M. SCHONEWILLE,b AND C. I. DE ZEEUW,b,c

*Department of Physiology, University of Pavia, CNISM (Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia), Via Forlani 6, I-27100, Pavia, Italy
*bDepartment of Neuroscience, Erasmus MC, 3000 DR Rotterdam, The Netherlands
*cNetherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
*dDepartment of Computer Architecture and Technology, University of Granada, E-18071 Granada, Spain

Abstract—The brain generates many rhythmic activities, and the olivo-cerebellar system is not an exception. In recent years, the cerebellum has revealed activities ranging from low frequency to very high-frequency oscillations. These rhythms depend on the brain functional state and are typical of certain circuit sections or specific neurons. Interestingly, the granular layer, which gates sensorimotor and cognitive signals to the cerebellar cortex, can also sustain low frequency (7–25 Hz) and perhaps higher-frequency oscillations. In this review we have considered (i) how these oscillations are generated in the granular layer network depending on intrinsic electroresponsiveness and circuit connections, (ii) how these oscillations are correlated with those in other cerebellar circuit sections, and (iii) how the oscillating cerebellum communicates with extracerebellar structures. It is suggested that the granular layer can generate oscillations that integrate well with those generated in the inferior olive, in deep-cerebellar nuclei and in Purkinje cells. These rhythms, in turn, might play a role in cognition and memory consolidation by interacting with the mechanisms of long-term synaptic plasticity. © 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: cerebellum, granular layer, oscillations, resonance, granule cells, Golgi cells.

Contents
Anatomo-functional properties of the olivo-cerebellar circuit 807
The mossy fiber input and the granular layer 807
The climbing fiber input, Purkinje cells and the molecular layer 808
The deep-cerebellar neurons and the cerebellum output stage 809
Special properties of granular layer neurons 810

Oscillations and resonance in the granular layer 811
Low-frequency granular layer oscillations 811
Prediction of high-frequency granular layer oscillations 811
Why are oscillations in the granular layer important? 812
Conclusion 812
Note added in proof 812
Acknowledgments 812
References 812

The olivo-cerebellar system processes sensorimotor signals to rapidly control fine movement coordination and to store memories of past procedures (Eccles et al., 1967; Ito, 1984). Moreover, a role of the cerebellum in cognitive functions has been reported by several groups (Schmahmann, 2004; Leiner et al., 1993; Sacchetti et al., 2004; Ito, 1993; Schmahmann and Caplan, 2006; Allen et al., 2004). The cerebellum has a regular anatomical matrix structure (Fig. 1), which inspired the first comprehensive models of cerebellar functions such as the motor learning theory (Marr, 1969; Albus, 1971; Fujita, 1982). The concepts of these theories still provide classic references, but at the time they were based on relatively limited knowledge of the functional properties of neurons and synapses involved. It was not until the potential roles of the Golgi cells were considered in detail that the granular layer was proposed to process input temporal patterns (Fujita, 1982; Chapeau-Blondeau and Chauvet, 1991) and generate internal oscillatory dynamics (Maex and De Schutter, 1998; Medina and Mauk, 2000).

In recent years, important achievements were made on cellular and synaptic properties of the olivo-cerebellar circuit. The key elements that turned out to be relevant for models on cerebellar processing include the precise time patterns of spikes in the various neurons and the distribution of long-lasting synaptic plasticity inside the network (Hansel et al., 2001; De Zeeuw and Yeo, 2005). These elements are functionally related throughout the entire circuit and they influence one another without almost any exception (Casado et al., 2002; Coesmans et al., 2004; Nieuw et al., 2006; Jönntell and Hansel, 2006; Steuber et al., 2007). More recent works attempt to address the issue as to how the network properties of the cerebellar system processes precisely the sequences of the timed signals and how it enforces the required internal dynamics (D'Angelo, 2008; Jacobson et al., 2008; De Zeeuw et al., 2008; D'Angelo and De Zeeuw, 2009). One of the intriguing properties in this respect is the capability of the olivo-
The cerebellar network to show oscillatory activities. Question remains which network factors cause the cerebellum to generate particular internal rhythms and to operate at preferential frequency bands, and what the functions of these oscillations might be (Buzsáki, 2006; De Zeeuw et al., 2008).

Although the EEG of the cerebellum is not used in daily clinical practice, experimental analysis has revealed that the cerebellum, in humans, can express all series of rhythms encompassing the theta, alpha, beta, gamma and very high frequency (VHF) bands (Dalal et al., 2008; Gross et al., 2002). These rhythms are likely to arise to a large extent from electric fields generated in the molecular layer (Isope et al., 2002; Cheron et al., 2008; de Solages et al., 2008; Middleton et al., 2008), but the granular layer is likely to contribute as well to at least some of these rhythms (for review see De Zeeuw et al., 2008). Extracellular field recordings in freely behaving animals have shown that large granular layer areas can oscillate in synchrony demonstrating remarkable coherence in the 7–25 Hz frequency range (Pellerin and Lamarre, 1997; Hartmann and Bower, 1998; Courtemanche et al., 2002; Courtemanche and Lamarre, 2005; Schnitzler, 2005; Schnitzler and Gross, 2006). In keeping with this, granular layer neurons are well equipped with appropriate membrane channels favoring activity in this band (D’Angelo et al., 2001; Solinas et al., 2007a,b). Moreover, computational modeling has predicted that the granular layer can generate theta-frequency oscillations (Kistler and De Zeeuw, 2003) and may also undergo cycles of activity at relatively higher frequencies (up to 40 Hz; Maex and De Schutter, 1998).

Interestingly, all these frequencies have been observed in muscular responses either as tremor or through EMG spectral analysis and are somehow species-specific. For example, eyelid oscillates at ~10 Hz in humans, ~20 Hz in cats and 25–30 Hz in rats, guinea pigs (Gruart et al., 2000) and mice (Koekkoek et al., 2002). Therefore, the cerebellum may be able to sustain oscillations at different frequencies to synchronize with other areas of the brain involved in sensorimotor control (Domingo et al., 1997; Gruart et al., 1997; Sanchez-Campusano et al., 2007).

While we recently focused on the interplay between timing and plasticity in shaping the granular layer response to external inputs (D’Angelo and De Zeeuw, 2009), here we...
will consider the cellular and functional properties of the granular layer and their implications for oscillations and resonance in the olivo-cerebellar system as a whole. Given the difficulties in classifying and comparing brain oscillations across brain regions, species or behaviors (Buzsáki, 2006), in this review we will refer to low-frequency oscillations when considering those between 7 and 25-30 Hz and to high-frequency oscillations when considering those occurring above 30 Hz.

ANATOMO-FUNCTIONAL PROPERTIES OF THE OLIVO-CEREBELLAR CIRCUIT

The cerebellum is organized in modules including cortical microcomplexes (De Zeeuw et al., 1994; Brown and Bower, 2001; Voogd et al., 2003; Pijpers et al., 2006). The understanding of circuit mechanisms can be conceived by addressing the connectivities within an individual module and the relation between the various modules (Fig. 1). Each module receives two major kinds of inputs, one from the mossy fibers and another from the climbing fibers. These inputs ultimately converge onto Purkinje cells, which eventually inhibit the deep cerebellar nuclei, representing the sole output of the circuit. Virtually all connectivities among neurons and interneurons in the cerebellar cortex occur within individual modules. The intracortical connections between modules occur prominently via the parallel fibers, apart from the Lugaro cell axons running along the parallel fibers and contacting different inhibitory neurons (including Purkinje cells, Golgi cells and stellate cells; Lainé and Axelrad, 1998; Dieudonné and Damoulín, 2000; Dean et al., 2003). Moreover, at the cerebellar input, common mossy fibers can activate more lobules and a single olivary neuron also usually reaches different modules even at a considerable distance (for review see De Zeeuw et al., 1998; Voogd et al., 2003). Here for clarity of presentation, we dissect the olivo-cerebellar system into three principal sub-circuits and we discuss their relationship accordingly.

The mossy fiber input and the granular layer

The mossy fibers provide one of the major inputs to the cerebellum and mediate sensorimotor and higher cognitive inputs via dedicated pathways running through the spinal cord, brainstem and cerebral cortex (Ito, 1984). The properties of the mossy fiber firing pattern appear to depend on the specific characteristics of the particular input source and the actual stimulus status. For example, during slow head rotations, the vestibular input is represented through a linear encoding of mossy fiber spike rates, typically in the 0–40 Hz range (Arenz et al., 2008; Bagnall et al., 2008); the trigeminal input tends to generate spike bursts in response to transient stimuli causing corresponding bursts in granule cells (Chadderton et al., 2004; Rancz et al., 2007); and the oculomotor eyeball input as well as joint input appears to produce both bursts and tonic discharges related to changes in position (van Kan et al., 1994; Kase et al., 1980). Since many of the sensory systems nuclei, pontine nuclei and cortical efferents also include neurons capable of both phasic and tonic discharge (e.g. see Ghez, 1991; Schwarz and Thier, 1999; Möck et al., 2006), the combined capacity is probably rather common in mossy fiber signaling, even though some spiking patterns may only become apparent during a particular status of the stimulus.

Signals coming into the cerebellum through the mossy fibers are processed in the granular layer network, which includes a feed-forward inhibitory loop (mossy fiber → Golgi cell → granule cell) and a feedback inhibitory loop (mossy fiber → granule cell → Golgi cell → granule cell). Here, with the intervention of the inhibitory circuits and synaptic plasticity, mossy fiber spikes are recoded into new spatiotemporal organized sequences by granule cells and Golgi cells exploiting their specific electroresponsive properties, which are specialized for sustaining bursting and repetitive activity on specific frequency bands (D’Angelo et al., 2001; Mapelli and D’Angelo, 2007; D’Angelo, 2008; Solinas et al., 2007a,b) (Fig. 2). Four relevant aspects of this processing are:

a. Granular layer processing is fast and precise; output spikes are emitted within milliseconds exploiting fast synaptic and excitatory mechanisms (Silver et al., 1992; D’Angelo et al., 1995; Cathala et al., 2005).

b. Specific input patterns, under the guidance of inhibitory circuits, can induce bidirectional NMDA receptor-dependent long-term synaptic plasticity at the mossy fiber–granule cell synapse (D’Angelo et al., 1999; Armano et al., 2000; Rossi et al., 2002; Maffei et al., 2002; Sola et al., 2004; Gall et al., 2005; Mapelli and D’Angelo, 2007). Long-term potentiation (LTP) and probably also long-term depression (LTD) are expressed presynaptically (Sola et al., 2004; D’Errico, Prestori and D’Angelo, unpublished observations), and as such they may have a prominent impact on timing through their control of repetitive neurotransmitter dynamics, i.e. short-term facilitation and depression (Nieus et al., 2006).

c. By controlling first spike delay, LTD would allow spikes to fall inside the window set by Golgi cells feed-forward inhibition, while LTD would drive the granule cells response beyond the window limit (“window-matching” effect; D’Angelo, 2008; D’Angelo and De Zeeuw, 2009). By doing so, the granular layer operates a spatiotemporal filtering of signals and a spatiotemporal redistribution of activity, which can eventually lead to computational operations involving coincidence detection and pattern separation (Mapelli J, Gandolfi D and D’Angelo E, unpublished observations).

d. The granule cells are resonant and the Golgi cells are pacemaking and resonant at low frequency (< 10 Hz in vitro, but probably higher in vivo; Vos et al., 1999; D’Angelo et al., 2001; Solinas et al., 2007a,b). The granular layer can be entrained in repetitive synchronous discharges in the 7–25 Hz range (Pellerin and Lamarre, 1997; Hartmann and Bower, 1998; Courtelmane et al., 2002; Courtelmane and Gross, 2005). Thus together, these four elementary aspects of granular...
layer processing show that this layer is in principle well equipped to control the absolute timing and phase of oscillations and resonance (Fig. 2). This control is of fundamental importance since every subsequent computation in the cerebellum will depend on it. Granule cell spike patterns are further processed in Purkinje cells, induce long-term synaptic plasticity at the parallel fiber–Purkinje cell synapse and activate molecular layer interneurons.

The climbing fiber input, Purkinje cells and the molecular layer

A second major input to the cerebellar cortex comes from the inferior olive through the climbing fiber system. The inferior olive itself receives inputs from many brain regions that form, in fact, directly or indirectly a source for one of the mossy fiber inputs (for review see De Zeeuw et al., 1998). The olivary neurons have a propensity to oscillate (Llinás and Yarom, 1981; Chorev et al., 2007; Khosrovani et al., 2007; Van Der Giessen et al., 2008), and their climbing fiber activities can produce theta-frequency patterns in the cerebellar cortex by directly innervating the dendritic arbors of Purkinje cells and inhibitory interneurons, including stellate cells (Barmack and Yakhnitsa, 2008) and possibly Golgi cells (Xu and Edgley, 2008). In fact, in Purkinje cells, climbing fiber activities are able to exert a very powerful phasic excitation through the complex spike (Miall et al., 1998). The complex spike signal may carry an error in motor performance and as such it might be used as an instruction for generating synaptic plasticity at the parallel fiber to Purkinje cell synapse (Ito and Kano, 1982; Coesmans et al., 2004). Moreover, climbing fibers can exert a tonic inhibitory action (Montarolo et al., 1982), which has been assumed to be due to collaterals to interneurons. Recently, Szapiro and Barbour (2007) have provided a mechanistic explanation to this observation by demonstrating that interneurons are affected by glutamate spillover from the climbing fibers.

The Purkinje cells have their own processing mechanisms, which also rely on intrinsic electroresponsive properties and synaptic plasticity. Their most relevant computational aspects are:

a. Purkinje cells are spontaneously active (30–50 Hz) and their discharge is modulated by inputs from the olivary neurons, granule cells, and molecular layer interneurons. Following the original observations by Ad-
Purkinje cells may communicate through spike pauses to control on the ultimate motor output (Fig. 3). In fact, while Jacobson et al., 2008) and those that exert a more direct coupling and oscillations (De Zeeuw et al., 1989, 1998; Shin et al., 2008) demonstrate convincingly in freely behaving animals yet, principally Purkinje cells, mossy fibers and climbing fibers, respectively. While the backbone of the circuit summarizes classic knowledge on the cerebellum (e.g. see Eccles et al., 1987), some less known connections like those from climbing fibers to the SC and GoC (Shibata et al., 1998; Barmack and Yakhnitsa, 2008) and from the DCN to GrC (Buisseret-Delmas and Angaut, 1989; Trott et al., 1998) may also play an important role for the overall network synchronization and phase-locking.

The deep-cerebellar neurons and the cerebellum output stage

The Purkinje cells form the only output of the cerebellar cortex and they inhibit the cells of the vestibular nuclei (VN) and deep-cerebellar nuclei (DCN), which ultimately convert the activities of the microzones and those of the mossy fiber and climbing fiber collaterals into the final cerebellar output (Fig. 1). The VN and DCN are thus at a key location within the cerebellar network. Their projection neurons can be divided into at least two main groups: those that inhibit the inferior olivary (IO) cells presumably regulating their coupling and oscillations (De Zeeuw et al., 1989, 1998; Jacobson et al., 2008) and those that exert a more direct control on the ultimate motor output (Fig. 3). In fact, while the role of inhibitory interneurons has not been demonstrated convincingly in freely behaving animals yet, principal neurons can be divided into types A and B, which modulate their firing in relation to activation of agonist or antagonist muscles (Gruart et al., 2000; van Kan et al., 1993). The most relevant properties of the DCN neurons are the following:

a. DCN neurons are intrinsically active at frequencies ranging from a few Hz to tens of Hz (Uusisaari et al., 2007). In general, the intrinsic dynamics of the cells generate silent pauses and often rebound excitation, producing alternating phases of activity depending on the strength and length of the inhibition induced by the Purkinje cells (Uusisaari et al., 2007). The projecting GABAergic and non-GABAergic DCN cells can be distinguished based on their synaptic currents; the synaptic currents in the GABAergic cells have lower amplitude, lower frequency and slower kinetics than those of the non-GABAergic cells (Uusisaari and Knöpfel, 2008). Therefore, the GABAergic cells appear better designed for conveying phasic spike rate information, whereas the larger non-GABAergic cells relay more faithfully tonic spike rate.

b. The DCN and VN neurons may act as one of the main substrates of downstream motor memory storage (Lisberger and Sejnowski, 1992; Wada et al., 2007; Ito, 2006). This hypothesis is supported by the fact that the synaptic strength of their inputs as well as their active membrane properties can be readily modified (Telgkamp and Raman, 2002; Aizenman et al., 1998; Aizenman and Linden, 2000). Interestingly, as predicted by a recent model of the cerebellar nuclei neurons and their Purkinje cell and mossy fiber collateral inputs (De Zeeuw et al., 2008), Pugh and Raman (2008) showed that the extent of plasticity varies with the relative timing of synaptic excitation evoked by the mossy fiber collaterals and the hyperpolarization induced by the Purkinje cells activity.

Thus, one can hypothesize that the synchronous oscillations in the Purkinje cell activities together with plasticity at the mossy fiber–DCN and the Purkinje cell–DCN synapses form the main mechanistic tools to control the activity in the DCN output neurons, and that different sets of neurons in the DCN
are sensitive for oscillations at different frequency ranges (for details about hypothesis see De Zeeuw et al., 2008).

There are, in addition, several connections between these three main subcircuits. Activity of the inferior olive can be conveyed through the climbing fiber–stellate cell–Golgi cell circuit (Dumoulin et al., 2001; Szapipo and Barbour, 2007; Barmack and Yaknitz, 2008). Moreover, Golgi cells may also be inhibited directly through metabotropic receptor activation by the climbing fibers, as proposed by Xu and Edgley (2008). Finally, some mossy fibers can originate from the DCN (Trott et al., 1998). Thus, activity of the IO and DCN can be reverberevered in the granular layer. Interestingly, the interaction between the two main subsystems can exert complex effects on spike discharge and on synaptic plasticity in Purkinje cells (Miall et al., 1998; Hansel et al., 2001).

As a whole, one can conclude that all circuit subsections make their own contribution to oscillatory activity in the cerebellum and eventually interact through several internal connection loops. Importantly, the granular layer is the starting point for the activities generated in several of the other circuit sections.

SPECIAL PROPERTIES OF GRANULAR LAYER NEURONS

Both the granule cells and Golgi cells have complex dynamic properties, which can influence granular layer temporal patterns. Granule cells, in addition to generating repetitive nonadapting spike discharge in response to a continuous stimulus (D’Angelo et al., 1995, 1996; Brickley et al., 1996), can enhance spike burst generation and resonate in a low-frequency band (between 4 and 10 Hz) (D’Angelo et al., 2001; Magistretti et al., 2006). High-frequency bursting (Chadderton et al., 2004; Jörntell and Eckerot, 2006; Rancz et al., 2007; Barmack and Yakhnitsa, 2008) as well as collective low-frequency oscillations (Hartmann and Bower, 1998; Pellerin and Lamarre, 1997; Lu et al., 2005) characterize indeed granule cell responses in vivo. Golgi cells show an even more complicated set of excitable properties including pacemaking, rebound excitation and burst discharge (Dieudonné, 1998; Forti et al., 2006), whose mechanisms have recently been elucidated to a considerable extent (Solinas et al., 2007a,b). The pacemaker oscillation usually also occurs at low frequency (between 4 and 10 Hz) and spikes triggered by incoming synaptic inputs can reset the phase of such ongoing intrinsic oscillations. The response to brief repetitive depolarization generally starts with a doublet or triplet of spikes and subsequently resonates at a faster, stronger and more precise rhythmic activity at the theta-frequency band. Importantly, most of these properties can be traced in vivo in that Golgi cells under these conditions too are spontaneously active and show precise temporal response patterns to punctuate stimulation, which include fast bursts followed by a silent pause corresponding to phase-reset (Vos et al., 1999; Simpson et al., 2005; Holtzman et al., 2006a,b).

The importance of bursting could be related to the need of generating reliable and strong responses to the high-frequency bursts of impulses entering the granular layer through the mossy fibers (Vos et al., 1999; Chadderton et al., 2004; Jörntell and Eckerot, 2006; Rancz et al., 2007). Bursts are intensified by specific ionic mechanisms including the resurgent Na current, whose contribution becomes particularly efficient when cell excitation is intense (Magistretti et al., 2006; Solinas et al., 2007a). As a consequence, the response of those granule cells that are intensely activated will be prizined with the generation of a burst, whose duration is limited by a brisk feed-forward inhibition caused by a similar burst in the Golgi cell. On this basis one may anticipate that erratic spikes in the mossy fibers will not be efficiently transmitted, so that the burst-burst mechanism would indeed play a role for secure transmission along the mossy fiber pathway (e.g. see Rancz et al., 2007).

The dynamic properties of the granule cells and Golgi cells described above are reflected in the composition of their conductances. While they both contain the sodium, calcium and potassium currents responsible for repetitive firing regulation, bursting and resonance, it is only the Golgi cells that express the specific conductances required for pacemaking, phase resetting and rebound excitation (Table 1). An important consideration is that Golgi cell rhythmic activity at 4–10 Hz can be linearly biased by injected currents (Dieudonné et al., 1998; Forti et al., 2006; Solinas et al., 2007a,b), so that different frequencies may be generated under continuous synaptic bombardment. Indeed, spontaneous activity of Golgi cells in vivo shows a range of values from 4 up to 30 Hz (Vos et al., 1999; Holtzman et al., 2006a,b). Despite this variability, however, resonance would remain unaltered, since it depends on the specific channels expressed in the membrane rather than on the bias input current. Therefore, Golgi cells can provide a flexible background firing while maintaining a stable resonance frequency.

The granule cell–Golgi cell loops are probably regulated by other neurons including the stellate cells, the IO cells, Lugaro cells and, in the vestibulocerebellum, the unipolar brush cells (UBC) (Fig. 1, inset: for further details see D’Angelo, 2008; D’Angelo and Dezeeuw, 2009). UBCs are organized to redistribute and perpetuate excitation. Although the investigation of UBC responses to mossy fiber inputs is still incomplete (for the original report see Table 1. Major ionic currents that regulate granule and Golgi cell excitability (D’Angelo et al., 2001; Forti et al., 2006; Solinas et al., 2007a,b).

<table>
<thead>
<tr>
<th>Granule cell</th>
<th>Golgi cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-frequency doublets</td>
<td>Na<sup>r</sup></td>
</tr>
<tr>
<td>Spike delay</td>
<td>K<sup>A</sup></td>
</tr>
<tr>
<td>Resonance</td>
<td>Na<sup>p</sup>-K-slow</td>
</tr>
<tr>
<td>Pacemaking</td>
<td>Na<sup>p</sup>-K-slow/K-AHP/h</td>
</tr>
<tr>
<td>Phase-reset</td>
<td>K-AHP</td>
</tr>
</tbody>
</table>

Abbreviations: Na^p, persistent Na current; Na^r, resurgent Na current; K^A, A-current; K-slow, slow (M-like) potassium current; K-AHP, amamine-sensitive calcium-dependent potassium current; h, h-current; LVA, low-voltage-activated calcium current.
Rossi et al., 1995), UBCs have been shown to generate either tonic or burst discharge or even to present intrinsic oscillations depending on resting potential (Diana et al., 2007; Russo et al., 2007) by exploiting the properties of an h-current and a low voltage activated calcium current. UBCs, like granule cells, are inhibited by Golgi cells (Dugas et al., 2005) and could be tuned on a low-frequency band (S. Masetto, P. Perin, L. Bottà, and E. D’Angelo, unpublished observations). Lugaro cells (Fig. 1, inset) are normally silent but specifically inhibit Golgi cells upon serotonergic activation, thereby providing a mechanism to regulate the extent of granular inhibition in relation to internal states (e.g., attention, arousal, reward) of the CNS (Dieudonné and Dumoulin, 2000; Geurts et al., 2003).

OSCILLATIONS AND RESONANCE IN THE GRANULAR LAYER

Low-frequency granular layer oscillations

Regular synchronous oscillations in the low frequency (7–25 Hz) range were reported over large granular layer fields in vivo during periods of resting attentiveness in rats and monkeys (Hartmann and Bower, 1998; Pellerin and Lamarre, 1997). The low-frequency preference of the granular layer denotes the ability of the granular layer to tune toward similar patterns conveyed by afferent structures. Low-frequency oscillations, specifically in the theta band, pervade sensorimotor processing (Llinás, 1988; Llinás et al., 1997; Gross et al., 2002; Schnitzler and Gross, 2005). For instance, whisking in rodents occurs at ~10 Hz, so that the same frequency is probably reverberated into the cerebellum both through the sensorimotor cortex and the sensory afferent pathways as a consequence of movement. A remarkable coherence between low frequency oscillations in sensorimotor cortex and cerebellum has been indeed observed in the rat and monkey (O’Connor et al., 2002; Courtemanche et al., 2002).

The theta-band seems predominant in the cerebellum and the tendency of neurons in the granular layer to operate in the theta-band does not stand alone (Fig. 3). At least two other loops within the same system may operate largely within the same frequency range. First, the recurrent circuitry passing through the DCN may reactivate the granular layer in about 100 ms (Kistler and De Zeeuw, 2003; see also Porrill and Dean, 2007) (Fig. 3). Since mossy fibers are also emitted by DCN neurons (Trott et al., 1998), the theta frequency tuning of the granular layer may evolve so as to raise the sensitivity to recurrent DCN inputs, which presumably represent an efference copy of the cerebellar motor output. Second, many of the activities in olivo-cerebellar modules formed by the inferior olive, DCN and Purkinje cells, are dominated by the pace generated in the neurons of the olive, which also tend to oscillate and fire in the theta-band (Llinás and Yarom, 1981; De Zeeuw et al., 1998; Kitazawa and Wolpert, 2005; Chorev et al., 2007; Khosrovani et al., 2007). Thus, since the Golgi cells presumably receive various direct and indirect inputs (either excitatory or inhibitory) from the climbing fibers derived from the olive (see above; Sugihara, 2006; Barmack and Yakhnitsa, 2008; Xu and Edgley, 2008) (Fig. 3), the granular layer may also tune toward the dominant frequencies of the olivo-cerebellar modules. Finally, it should be noted that the theta frequency preference of the cerebellar network matches that of certain input patterns coming from extracerebellar areas, which provide inputs to sources of both the mossy fiber and climbing fiber system. For instance, vibrissal activations and movements in rodents occur at about 10 Hz and give rise to projections to both the pontine nuclei and inferior olive (Kleinfeld et al., 2006) as well as directly from the trigeminal nucleus to the cerebellum (Bower and Woolston, 1983; Morissette and Bower, 1996). Taken together, one can conclude that the theta-band operations in the granule cell layer can be readily integrated with those of other cerebellar and extracerebellar theta-band activities.

Prediction of high-frequency granular layer oscillations

In addition to elaborate slow 7–25 Hz oscillations, the granular layer may be able to generate oscillations at higher frequency. There are two main circuit loops suggesting that this could indeed be the case.

Golgi cell inhibition of granule cells can rapidly arrest signal transmission along the mossy fiber pathway. Feedback inhibition (mossy fiber→Golgi cell→granule cell) operates rapidly (Kanichay and Silver, 2008), usually allowing the time for just a couple of spikes to cross the mossy fiber→granule cell relay. This effect was called “time-windowing” (D’Angelo and De Zeeuw, 2009). The time window is typically of about 5 ms and allows the granule cells to fire one to two spikes in response to a single mossy fiber stimulus (Mapelli and D’Angelo, 2007). During a continuous stimulation, feedback cell inhibition (granule cell→Golgi cell→granule cell) can depress signal transmission along the mossy fiber→granule cell pathway with a longer delay. Computational modeling predicts that, in the presence of a continuous input, this mechanism can give rise to oscillations, since once granule cells are excited, they activate the Golgi cell switching excitation off. When the inhibitory action is terminated, the cycle can restart generating oscillation at frequencies depending on the cell and synaptic time constants of the circuit (around 40 Hz in Maex and DeSchutter, 1998).

Double inhibition from the molecular layer (granule cell→stellate cells→Golgi cell→granule cell) can reduce Golgi cell activity (Barmack and Yakhnitsa, 2008). Computational modeling suggests that this mechanism could be important to stabilize high-frequency oscillatory cycles, since the excitability of granule cells would be raised after each excitation/inhibition cycle favoring re-excitation (J. A. Garrido, E. Ros, R. R. Carrillo, E. D’Angelo, unpublished observations).

Unfortunately, the MEG demonstration of the gamma band oscillations in the human cerebellum could not indicate their layer of origin (Dalal et al., 2008; Gross et al., 2002) and high-frequency granular layer oscillations remain to be demonstrated experimentally (e.g. using local field potentials).
Why are oscillations in the granular layer important?

From this review, it emerges that granular layer oscillations may play a critical role in cerebellar activity.

Low-frequency oscillations are fundamental for several neurophysiological processes, including motor control, the formation of memories and sleep (for review see Buzsáki, 2006). Low-frequency activity was shown to correlate with that in the cerebral cortex, and may therefore represent a suitable band for communication between cerebellum and the thalamo-cortical system (O’Connor et al., 2002). Moreover, it may provide a binding element between the two main functional sections of the cerebellar cortex, i.e. mossy fiber and the climbing fiber input systems. The disruption of appropriate control mechanisms in the olive and DCN allows low-frequency oscillations to prevail at the DCN output stage causing muscle tremor, as it occurs with harnaline application and in essential tremor in humans (Llinás, 1988). Muscle tremor occurs at ∼10 Hz for larger muscles, and is also species-specific ranging from about 7 Hz to 25–30 Hz (Gruart et al., 2000; Koekkoek et al., 2002). Therefore, low-frequency patterns may have important yet incompletely understood roles in cerebellar control, opening new fields for future research.

Low-frequency oscillations are essential for signal processing at high rate (for review see Buzsáki, 2006). Since theafferent inputs are largely encoded with 5-ms precision in the 1st spike delay (Johansson and Birznieks, 2004), the same accuracy in the time-window matching process seems needed for efficient elaboration of incoming information. The repetition of these time-windows during protracted stimulation is predicted to generate high-frequency oscillations in the granular layer, providing a coherent framework for data processing over large granular layer fields. This periodic output may then be sampled by Purkinje cells, which also have a high-frequency regime of activity and provide precise timing of Purkinje cells simple spike activity over the same scale (Hoebeek et al., 2005; Shin et al., 2007). The high-frequency sampling based on oscillating background could be important if the Purkinje cell works as a perceptron, allowing signal sampling over very short time windows and improving pattern recognition (Brunel et al., 2004). The repetition of spikes emitted by granule cells in the gamma frequency band may also be important to implement other physiological processes. First, parallel fiber–Purkinje cell release probability is usually low (except for ascending axon synapses, Isole and Barbour, 2002; Sims and Hartell, 2006), so that high-frequency bursts can ensure efficient transmission through short-term parallel fiber–Purkinje cell facilitation. Secondly, there are forms of parallel fiber–Purkinje cell LTD which require doublets (Casado et al., 2000, 2002), so that persistent changes could be induced only at those synapse that receive high-frequency inputs. The demonstration of high-frequency oscillations in the granular layer remains an interesting challenge for future cerebellar investigations.

CONCLUSION

In conclusion, available evidence suggests that both slow and fast granular layer oscillations could have specific roles in cerebellar signal processing. While high-frequency oscillations may support millisecond-scale timing in granular layer activities preparing signals for Purkinje cells and allowing fast and precise elaboration of single motor acts, low-frequency oscillations may support repetition or coordination of complex motor sequences. Indeed, the granular layer demonstrates a theta-frequency preference that is indicative of the existence of such higher-order dynamics, and anatomical and functional evidence suggests that these could involve entire cerebellar modules. This low-frequency activity may be important for coordinating cerebellar communication with the sensorimotor cortex correlating with processes like learning, arousal and attention.

Note added in proof

Acknowledgments—The authors thank for discussion about aspects of the present work F. Hoebeek, P. Rossi, L. Forti, F. Prestori, J. Mapelli, S. Diwakar, E. Cesana, and D. Gandolfi. This work was supported by the joined EU project SENSOOPAC (to E.D., C.I.D.Z. and E.R.), by the EU project CYBERRAT and the CNISM project NEUROIMAGE (to E.D.), and by the Princes Beatriz Fonds, Zon-MW and Neuro-Boik (Senter) in the Netherlands (to C.I.D.Z.).

REFERENCES

Bower JM, Woolston DC (1983) Congruence of spatial organization of
tactile projections to granule cell and Purkinje cell layers of cere-
bellar hemispheres of the albino rat: vertical organization of cere-
form of synaptic inhibition in rat cerebellar granule cells resulting
from persistent activation of GABA_A receptors. J Physiol 497:753–
759.
Brown IE, Bower JM (2001) Congruence of mossy fiber and climbing
fiber tactile projections in the lateral hemispheres of the rat cere-
information storage and the distribution of synaptic weights: Per-
Buisséret-Delmas C, Angaut P (1989) Anatomical mapping of the
cerebellar nuclei-cortical projections in the rat: a retrograde label-
Press.
N-methyl-D-aspartate receptors at the parallel fiber–Purkinje cell synapse. Proc
N-methyl-D-aspartate receptors in cerebellar long-term depression.
Neuron 33:123–130.
speeding of AMPA receptor-mediated EPSCs. Nat Neurosci 8:
1310–1318.
Chadderton P, Margrie TW, Häusser M (2004) Integration of quanta in
cerebellar granule cells during sensory processing. Nature 428:
856–860.
Chapeau-Blondeau F, Chauvet G (1991) A neural network model of the
cerebellar cortex performing dynamic associations. Biol Cybern
Chorey E, Manor Y, Yarom Y (2007) Rhythmic episodes of subthreshold
membrane potential oscillations in the rat inferior olive nuclei in
parallel fiber plasticity in the cerebellum under climbing fiber con-
Courtemanche R, Lamarre Y (2005) Local field potential oscillations in
primate cerebellar cortex: synchronization with cerebral cortex during
oscillations in primate cerebellar cortex: modulation during active
Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM,
Canoty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Na-
garanjan SS (2008) Five-dimensional neuroimaging: localization of the
time-frequency dynamics of cortical activity. Neuroimage 40:
1686–1700.
D’Angelo E (2008) The critical role of Golgi cells in regulating spatio-
temporal integration and plasticity at the cerebellum input stage. Front
Neurosci 2:35–46.
D’Angelo E, De Filippi G, Rossi P, Taglietti V (1995) Synchronous excita-
tion of individual rat cerebellar granule cells in situ: evidence for the
role of NMDA receptors. J Physiol Lond 484:397–413.
D’Angelo E, De Filippi G, Rossi P, Taglietti V (1998) Ionic mechanism of
electroresponsiveness in cerebellar granule cells implicates the
D’Angelo E, De Zeeuw C (2009) Timing and plasticity in the cerebel-
D’Angelo E, Nieuw T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana
A, Naldi G (2001) Theta-frequency bursting and resonance in
cerebellar granule cells: experimental evidence and modeling of a slow
and mGlu receptor-dependent long-term potentiation of mossy
ﬁbre–granule cell transmission in rat cerebellum. J Neurophysiol
81:277–287.
GABAergic synaptic current recorded in rat cerebellar Purkinje
4469.
de Solages C, Szapiro G, Brunel N, Hakim V, Isole P, Buisséret P,
Rousseau C, Barbour B, Léna C (2008) High-frequency organiza-
tion and synchrony of activity in the Purkinje cell layer of the
cerebellum. Neuron 58:775–798.
De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural
study of the GABAergic, cerebellar, and mesodiencephalic inner-
vation of the cat medial accessory olive: anterograde tracing com-
De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JJ (1994) Projections of
individual Purkinje cells of identified zones in the flocculus to the
De Zeeuw CI, Simpson JJ, Hoogenraad CC, Galjart N, Koekkoek SKE,
De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory
De Zeeuw CI, Hoebbeek FE, Schonewille M (2008) Causes and conse-
quences of oscillations in the cerebellar cortex. Neuro 58:
655–658.
T-type and L-type Ca^2+ conductances define and encode the
bimodal firing pattern of vestibulocerebellar unipolar brush cells. J
Dieudonné S (1998) Submillisecond kinetics and low efficacy of par-
allel fibre-Golgi cell synaptic currents in the rat cerebellum.
Dieudonné S, Dumoulin A (2000) Serotonin-driven long-range inhibi-
tory connections in the cerebellar cortex. J Neurosci 20:1837–
1848.
Domingo JA, Gruart A, Delgado-Garcia JM (1997) Quantal organiza-
tion of reflex and conditioned eyelid responses. J Neurophysiol
78:2518–2530.
Dugué GP, Dumoulin A, Triller A, Dieudonné S (2005) Target-depend-
ent use of coreleased inhibitory transmitters at central synapses.
Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified
GABAergic and mixed GABAergic and glycineergic synapses onto
Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal
machine. Berlin: Springer-Verlag.
Forti L, Cesana E, Mapelli J, D’Angelo E (2006) Ionic mechanisms of
auditory synaptic firing in rat cerebellar Golgi cells. J Physiol 574:
711–729.
Gall D, Prestori F, Sola E, D’Errico A, Roussel C, Forti L, Rossi P,
D’Angelo E (2005) Intracellular calcium regulation by burst dis-
charge determines bidirectional long-term synaptic plasticity at the
Geurts FJ, De Schutter E, Dieudonné S (2003) Unraveling the cere-
bellar cortex: cytology and cellular physiology of large-sized inter-
neurons in the granular layer. Cerebellum 2:290–299.
(Kandel ER, Schwartz JH, Jessel TM, eds), pp 756–781. Norwalk,
CT: Appleton and Lange.

E. D’Angelo et al. / Neuroscience 162 (2009) 805–815 813

Jacobsen GA, Rotkin D, Yarom Y (2008) A model of the olivo-cerebel-

Koekkoek SK, Den Ouden WL, Perry G, Hightstein SM, De Zeeuw CI (2002) Monitoring kinetic and frequency-domain properties of eye-

Koekkoek SK, Den Ouden WL, Perry G, Hightstein SM, De Zeeuw CI (2002) Monitoring kinetic and frequency-domain properties of eye-

Koekkoek SK, Den Ouden WL, Perry G, Hightstein SM, De Zeeuw CI (2002) Monitoring kinetic and frequency-domain properties of eye-

McAra JF, Mauck MD (2000) Computer simulation of cerebellar inform-

Author's personal copy

