Intracellular Calcium Regulation by Burst Discharge Determines Bidirectional Long-Term Synaptic Plasticity at the Cerebellum Input Stage

David Gall,1,2,4 Francesca Prestori,1,2 Elisabetta Sola,1,2 Anna D’Errico,1 Celine Roussel,4 Lia Forti,1,2 Paola Rossi,1,2 and Egidio D’Angelo1,2,3

1Department of Cellular–Molecular Physiological and Pharmacological Sciences, University of Pavia, I-27100 Pavia, Italy, 2National Institute for the Physics of Matter, I-16152 Genova, Italy, 3Department of Functional and Evolutionary Biology, University of Parma, I-34100 Parma, Italy, and 4Laboratoire de Neurophysiologie (CP601), Faculte de Medecine, Universite de Bruxelles, B-1070 Bruxelles, Belgium

Variations in intracellular calcium concentration ([Ca2+]i) provide a critical signal for synaptic plasticity. In accordance with Hebb’s postulate (Hebb, 1949), an increase in postsynaptic [Ca2+]i can induce bidirectional changes in synaptic strength depending on activation of specific biochemical pathways (Bienenstock et al., 1982; Lisman, 1989; Stanton and Sejnowski, 1989). Despite its strategic location for signal processing, spatiotemporal dynamics of [Ca2+]i changes and their relationship with synaptic plasticity at the cerebellar mossy fiber (mf)–granule cell (GrC) relay were unknown. In this paper, we report the plasticity/[Ca2+]i relationship for GrCs, which are typically activated by mf bursts (Chadderton et al., 2004). Mf bursts caused a remarkable [Ca2+]i increase in GrC dendritic terminals through the activation of NMDA receptors, metabotropic glutamate receptors (probably acting through IP3-sensitive stores), voltage-dependent calcium channels, and Ca2+-induced Ca2+ release. Although [Ca2+]i increased with the duration of mf bursts, long-term depression was found with a small [Ca2+]i increase (bursts < 250 ms), and long-term potentiation (LTP) was found with a large [Ca2+]i increase (bursts > 250 ms). LTP and [Ca2+]i, saturated for bursts > 500 ms and with theta-burst stimulation. Thus, bursting enabled a Ca2+-dependent bidirectional Bienenstock–Cooper–Munro-like learning mechanism providing the cellular basis for effective learning of burst patterns at the input stage of the cerebellum.

Key words: calcium; LTP; LTD; synaptic plasticity; cerebellum; granule cells

Introduction

Compelling evidence indicates that variations in intracellular calcium concentration ([Ca2+]i) regulate the induction of long-term synaptic plasticity (Mulkey and Malenka, 1992; Artola and Singer, 1993), a modification of synaptic strength thought to be the basis for learning and memory in the brain (Bliss and Collingridge, 1993; Malenka and Nicoll, 1999; Bliss et al., 2003). At glutamatergic synapses, [Ca2+]i changes depend on the activation of NMDA receptors (NMDA-Rs) and metabotropic glutamate receptors (mGlu-Rs) and can be reinforced by the opening of voltage-dependent Ca2+ channels (VDCCs) and by Ca2+-release from intracellular stores (Jaffe and Brown, 1994; Nishiyama et al., 2000). Hebb’s postulate (Hebb, 1949) implies three main properties that would allow [Ca2+]i to drive synaptic modifications necessary for neuronal selectivity and network reconfiguration (Bienenstock et al., 1982; Lisman, 1989, 2001, 2003; Stanton and Sejnowski, 1989; Kevin and Sejnowski, 2002): the [Ca2+]i increase (1) needs to be controlled by the specific activity patterns characterizing a particular synaptic relay, (2) should be localized into individual postsynaptic sites to preserve input selectivity, and (3) should cause bidirectional plasticity (comprising long-term depression (LTD) and long-term potentiation (LTP)) to optimize learning capacity. In pyramidal neurons of the hippocampus and neocortex, different activity patterns could indeed induce bidirectional synaptic modifications through a predictable relationship with the [Ca2+]i increase (Neveu and Zucker, 1996; Hansel et al., 1997; Yang et al., 1999; Cho et al., 2001; Cormier et al., 2001) (for review, see Siöström and Nelson, 2002). Moreover, in some studies, it was possible to show that the [Ca2+]i change was limited to dendritic spines or subregions of smooth dendrites (Svoboda et al., 1996; Sabatini et al., 2001, 2002; Augustine et al., 2003; Goldberg et al., 2003). The molecular substrates of the transformation of a monotonic [Ca2+]i increase into bidirectional plasticity, envisioned by Lisman (1989), have also recently received experimental support (DeMaria et al., 2001) (for review, see Lisman, 2001, 2003). In this paper, the existence and properties of bidirectional Ca2+-dependent plas-
ticity will be investigated at the mossy fiber (mf)–granule cell (GrC) relay, which regulates information transfer at the input stage of the cerebellum.

GrCs receive high-frequency bursts, which could be particularly suitable to process \([\text{Ca}^{2+}]_{i}\) signals (Lisman, 1997; Krahe and Gabbiani, 2004), from mfs after peripheral and central activation (Kase et al., 1980; Szwed et al., 2003; Chadderton et al., 2004). In slice preparations, high-frequency bursts can induce mf–GrC LTP through NMDA-R and mGlu-R activation (D’Angelo et al., 1999; Armano et al., 2000; Hansel et al., 2001), but no demonstration of LTD was reported. Moreover, although previous observations suggested the involvement of \([\text{Ca}^{2+}]_{i}\)-dependent mechanisms, these have never been investigated. Reports in cell culture have revealed \(\text{Ca}^{2+}\) entering through NMDA and VDCCs and released by inositol 1,4,5-trisphosphate (IP$_3$) and rytonadin-sensitive intracellular \(\text{Ca}^{2+}\) stores (Irving et al., 1992a,b; Simpson et al., 1996; del Rio et al., 1999; Masgrau et al., 2001; Monti et al., 2002); however, because \([\text{Ca}^{2+}]_{i}\) changes were stimulated by exogenous drug application and measured in the soma, neither their input specificity nor their relationship with input patterns or synaptic plasticity could be assessed.

In this paper, we investigated \([\text{Ca}^{2+}]_{i}\) dynamics during repetitive neurotransmission at the cerebellar mf–GrC synapse by combining \(\text{Ca}^{2+}\) imaging with the patch-clamp technique in acute cerebellar slices. NMDA-R- and mGlu-R-dependent \([\text{Ca}^{2+}]_{i}\), increase occurred prominently in GrC dendritic endings and was locally amplified by VDCCs and intracellular \(\text{Ca}^{2+}\) stores. Interestingly, the \([\text{Ca}^{2+}]_{i}\) increase reflected the duration of mf bursts, revealing a Bienenstock–Cooper–Munro (BCM)-like relationship (Bienenstock et al., 1982) in which LTD appeared for short isolated bursts causing small \([\text{Ca}^{2+}]_{i}\), changes and LTP appeared for long or repeated bursts causing relatively large \([\text{Ca}^{2+}]_{i}\), changes. The efficient translation of mf input bursts into local \([\text{Ca}^{2+}]_{i}\) changes and bidirectional long-term synaptic plasticity may have relevant consequences for network computation underlying cerebellar sensorimotor control.

Materials and Methods

Slice preparation and electrophysiology. Parasagittal cerebellar slices (200 \(\mu\text{m}\) thick) were cut from the vermis of 19- to 23-d-old Wistar rats. Rats were decapitated after deep anesthesia with halothane (Sigma, St. Louis, MO). Slices were incubated for at least 1 h at 32°C in oxygenated extra-cellular solution containing the following (in mM): 120 NaCl, 2 KCl, 2 MgSO$_4$, 1.18 NaH$_2$PO$_4$, 26 NaHCO$_3$, and 10 glucose, pH 7.4, in a tissue culture solution, except for some voltage-clamp recordings in which the recording chamber and perfused (1–1.5 ml/min) with the same extracellular solution containing the following (in mM): 120 NaCl, 2 KCl, 2 CaCl$_2$, 1.19 MgSO$_4$, 1.18 NaH$_2$PO$_4$, 26 NaHCO$_3$, and 10 glucose, pH 7.4, when equilibrated with 95% O$_2$–5% CO$_2$. Slices were later transferred to the recording chamber and perfused (1–1.5 ml/min) with the same extracellular solution, except for some voltage-clamp recordings in which Mg$_2^+$ was omitted. Unless otherwise stated, the solution contained a 10 \(\mu\text{M}\) concentration of the GABA$_A$ receptor blocker bicuculline (Sigma). Drugs were perfused in the bath. 2-amino-5-phosphonovaleric acid (APV), 7-chlorokynurenic acid, (RS)-1-amino-8-1,5-dicarbonyl acid (AIDA), and thapsigargin were purchased from Tocris Cookson (Bristol, UK). Oregon Green 488 BAPTA-1 (OG1) was purchased from Molecular Probes (Eugene, OR). All recordings were made with an Axopatch 200A amplifier (Molecular Devices, Union City, CA) at room temperature (20–25°C). Membrane current and potential were recorded using the voltage-clamp mode and the fast current-clamp mode of the amplifier, respectively (D’Angelo et al., 1995, 1997, 1998, 2001). All recordings were made at a cutoff frequency of 10 kHz and subsequently digitized at 20 kHz using the acquisition software pClamp (Molecular Devices) in combination with a Digitdata 1200B analog-to-digital converter (Molecular Devices). Patch pipettes were pulled from borosilicate glass capillaries (Hilgenberg, Malsfeld, Germany) and had a resistance of 5–8 M\(\Omega\) when filled with the intracellular solution. For experiments combining voltage-clamp and fluorescence \(\text{Ca}^{2+}\) imaging, whole-cell recording pipettes were filled with the following (in mM): 140 CaCl$_2$, 4.6 MgCl$_2$, 10 HEPES, 4 Na-ATP, 0.4 Na-GTP, and 0.2 OG1, pH adjusted at 7.3 with CsOH. In whole-cell recordings used for morphological reconstruction, the same pipette-filling solution contained 0.4% biocytin instead of OG1. For experiments combining current-clamp and fluorescence \(\text{Ca}^{2+}\) imaging, the pipette solution was the following (in mM): 126 K-glucuronate, 4.6 MgCl$_2$, 5 HEPES, 4 Na-ATP, 0.4 Na-GTP, 15 glucose, and 0.2 OG1, pH adjusted at 7.3 with KOH. In experiments on synaptic plasticity, we used this same intracellular solution, except that OG1 was substituted with a buffer composed of 0.1 mM BAPTA and 0.02 mM CaCl$_2$ (D’Angelo et al., 1995, 1997, 1998). The mf bundle was stimulated with a bipolar tungsten electrode via a stimulus isolation unit using 200 \(\mu\text{s}\), 10 V pulses, which activate between 2 and 4 (2.9 ± 1.1; n = 8) synapses per GrC in comparable experimental conditions (Sola et al., 2004) (E. D’Angelo and E. Sola, unpublished observations). High-frequency pulses were delivered either as theta-burst stimulation (TBS) (four 100 ms, 100 Hz bursts of impulses repeated every 250 ms) or continuous stimulation (one burst of duration ranging from 100 to 1000 ms at 100 Hz).

The stability of patch-clamp recordings can be influenced by modifications of series resistance and neurotransmitter release. To ensure that series resistance remained stable during the recordings, passive cellular parameters were extracted in voltage clamp by analyzing current relaxation induced by a 10 mV step from a holding potential of −70 mV. The GrC has a compact structure and behaves like a single electrotonic compartment (Silver et al., 1992; D’Angelo et al., 1993, 1995). Accordingly, the transients were reliably fitted with a monoexponential function yielding membrane capacitance \((C_m)\) of 2.8 ± 0.1 \(\mu\text{F}\) \((n = 40)\), membrane resistance \((R_m)\) of 1.7 ± 0.2 \(\Omega\) \((n = 40)\), and series resistance \((R_s)\) of 26.7 ± 3.2 \(\Omega\) \((n = 40)\). The −3 dB cell plus electrode cutoff frequency \((f_{-3\text{db}})\) was 70 mV. The membrane resistance \((R_m)\) of 1.7 ± 0.2 \(\Omega\) \((n = 40)\), and series resistance \((R_s)\) of 26.7 ± 3.2 \(\Omega\) \((n = 40)\). The −3 dB cell plus electrode cutoff frequency \((f_{-3\text{db}})\) was 70 mV. The membrane resistance \((R_m)\) of 1.7 ± 0.2 \(\Omega\) \((n = 40)\), and series resistance \((R_s)\) of 26.7 ± 3.2 \(\Omega\) \((n = 40)\). The −3 dB cell plus electrode cutoff frequency \((f_{-3\text{db}})\) was 70 mV.

Data are reported as mean ± SEM, and, unless otherwise indicated, statistical comparisons are done using paired Student’s t test.

Calcium imaging. GrCs were identified using an upright Axioskop 2 microscope (Zeiss, Oberkochen, Germany) with a 63×, 0.9 numerical aperture water-immersion objective (Olympus, Hamburg, Germany).
with a steady current mostly determined by NMDA channels (Rossi et al., 2002). During mf stimulation, the EPSC oscillations are associated with a steady current mostly determined by NMDA channels (Rossi et al., 1994). Digital fluorescence images were obtained using an excitation light source from T.I.L.L. Photonics (Planegg, Germany) combined with a Molecular Devices acquisition system. Briefly, to excite fluorescence of the Ca\(^{2+}\) dye OG1 (Forti et al., 2000; Sabatini et al., 2001, 2002), light from a 75 W xenon lamp was focused on a scanning monochromator set at 488 nm and coupled, by an optical fiber and a lens, to the microscope equipped with a dichroic mirror and a high-pass emission filter centered at 505 and 507 nm, respectively. Images were acquired by a Peltier-cooled PCO Imaging (Kelheim, Germany) SensiCam CCD camera with a resolution of 640 × 480 pixels and a 2 × 2 binning (giving a 0.2 μm pixel size after 63 × magnification). During recordings, images were acquired with a 40 ms exposure/image at video rate. Acquisition started after allowing >2 min for dye loading in the neuron. After this time, the resting fluorescence \(F_0\) varied by <5% in each analyzed cell region for the entire recording time, indicating that OG1 concentration was stable. The background fluorescence \(B_0\) was also stationary. For example, for the group of imaging experiments shown in Figure 2, showing calcium transients in the synaptic terminals elicited by either membrane depolarization or high-frequency mf stimulation, the variation of \(B_0\) and \(F_0\) between the two successive experimental protocols was \(F_0 = 139.06 ± 23.02\) and \(B_0 = 95.36 ± 8.50\) for depolarization experiments and \(F_0 = 138 ± 21.34\) and \(B_0 = 97.86 ± 11.30\) for the mossy fiber stimulation experiments (\(n = 7\); differences were statistically not significant). A fast OG1 perfusion was favored by the small size of the somatodendritic compartment of GrCs [it should be noted that internal perfusion of the Na\(^{+}\) channel blocker 2(triethylamino)-N-(2,6-dimethylphenyl) acetamide takes a comparable time to block GrC spikes] (D’Angelo et al., 1993, 1999; Rossi et al., 1994). All stimulation protocols were separated by a minimum of 60 s to allow \([\text{Ca}^{2+}]_0\) to return to basal level. Cell damage was identified by the following signs: the failure of 200 ms depolarization at 0 mV in voltage clamp to elicit a fluorescence transient or the sudden inability of fluorescence levels to recover to baseline after stimulation. Such experiments were not analyzed. We never observed bleaching of OG1 basal fluorescence during individual stimulations.

Stimulus-induced fluorescence changes were analyzed off-line in the regions of interest (ROIs). For each experiment, regions were drawn by eye defining the ROIs in the first image of a sequence, thus giving a set of two-dimensional arrays of pixels. In addition, background fluorescence was evaluated by defining a background area of a similar size close to the cell. For each ROI, a measurement of the relative change in fluorescence during cell stimulation, \(\Delta F/F_0\), was obtained as follows. (1) For each consecutive nth image in the sequence, the fluorescence intensity, \(f(n)\), was evaluated in the ROI. (2) Background fluorescence was measured simultaneously in the background area, \(B(n)\). Care was taken to check that background fluorescence was stationary. (3) The background-subtracted fluorescence, \(F(n) = f(n) - B(n)\), was then used to evaluate \(\Delta F/F_0\). It was also evaluated in the ROI (inset) at the level of the glomerulus in the same cell as in A and B. Depolarization and mf stimulation induce \(\text{Ca}^{2+}\) transients of similar magnitude at the synaptic level. In this and subsequent figures, depolarization and mf stimulation are indicated by black bars. The voltage-clamp (VC) current elicited by depolarization and mf stimulation is shown at the bottom on the same time scale as the \(\text{Ca}^{2+}\) transient and is expanded in the inset. During depolarization, a large peak Na\(^{+}\) current is followed by a persistent component partially masked by outward K\(^{+}\) currents (the \(\text{Ca}^{2+}\) current is clearly visible only under selective ionic conditions) (Rossi et al., 1994). During mf stimulation, the EPSC oscillations are associated with a steady current mostly determined by NMDA channels (Rossi et al., 2002). Scale bar, 5 μm. Fluorescence intensity is color coded with arbitrary units within an interval chosen to show the visualization of the synaptic terminals (note that, although the soma fluorescence appears saturated within this interval, it does not saturate the CCD detectors). The shape of a glomerulus is clearly visible at the terminal portion of the dendrite. B. During voltage-clamp recordings, we measured the \(\text{Ca}^{2+}\) transients induced either by a 200 ms depolarization from −70 to 0 mV or by high-frequency mf stimulation (1 s at 100 Hz) while holding the GrC at −70 mV in the absence of extracellular Mg\(^{2+}\). The corresponding time series of pseudoratio images from this GrC (warmer color code for higher \(\Delta F/F_0\)) is shown. The \(\text{Ca}^{2+}\) increase is maximal at the level of the glomerulus during both depolarization and mf stimulation. C. \(\Delta F/F_0\) is evaluated in the ROI (inset) at the level of the glomerulus for the same cell as in A and B. Depolarization and mf stimulation induce \(\text{Ca}^{2+}\) transients of similar maximal amplitude at the synaptic level. In this and subsequent figures, depolarization and mf stimulation are indicated by black bars. The voltage-clamp (VC) current elicited by depolarization and mf stimulation is shown at the bottom on the same time scale as the \(\text{Ca}^{2+}\) transient and is expanded in the inset. During depolarization, a large peak Na\(^{+}\) current is followed by a persistent component partially masked by outward K\(^{+}\) currents (the \(\text{Ca}^{2+}\) current is clearly visible only under selective ionic conditions) (Rossi et al., 1994). During mf stimulation, the EPSC oscillations are associated with a steady current mostly determined by NMDA channels (Rossi et al., 2002). Scale bar, 5 μm. Fluorescence intensity is color coded with arbitrary units within an interval chosen to show the visualization of the synaptic terminals (note that, although the soma fluorescence appears saturated within this interval, it does not saturate the CCD detectors). The shape of a glomerulus is clearly visible at the terminal portion of the dendrite. B. During voltage-clamp recordings, we measured the \(\text{Ca}^{2+}\) transients induced either by a 200 ms depolarization from −70 to 0 mV or by high-frequency mf stimulation (1 s at 100 Hz) while holding the GrC at −70 mV in the absence of extracellular Mg\(^{2+}\). The corresponding time series of pseudoratio images from this GrC (warmer color code for higher \(\Delta F/F_0\)) is shown. The \(\text{Ca}^{2+}\) increase is maximal at the level of the glomerulus during both depolarization and mf stimulation. C. \(\Delta F/F_0\) is evaluated in the ROI (inset) at the level of the glomerulus for the same cell as in A and B. Depolarization and mf stimulation induce \(\text{Ca}^{2+}\) transients of similar maximal amplitude at the synaptic level. In this and subsequent figures, depolarization and mf stimulation are indicated by black bars. The voltage-clamp (VC) current elicited by depolarization and mf stimulation is shown at the bottom on the same time scale as the \(\text{Ca}^{2+}\) transient and is expanded in the inset. During depolarization, a large peak Na\(^{+}\) current is followed by a persistent component partially masked by outward K\(^{+}\) currents (the \(\text{Ca}^{2+}\) current is clearly visible only under selective ionic conditions) (Rossi et al., 1994). During mf stimulation, the EPSC oscillations are associated with a steady current mostly determined by NMDA channels (Rossi et al., 2002).
using OG1 (see Fig. 7) was indistinguishable from that observed using BAPTA (D’Angelo et al., 1995, 1997, 1998). [Ca\(^{2+}\)]\(_i\), changes in imaging recordings did not saturate OG1, as indicated by the significant increase in \(\Delta F/F_0\) observed with double TBS protocols (see Fig. 6) and by control recordings performed with the low-affinity dye Mg fura-2 (data not shown). Moreover, although OG1 tends to slow down [Ca\(^{2+}\)]\(_i\) kinetics (Sabatini et al., 2001, 2002), these could be significantly accelerated by blocking release from intracellular stores (see Fig. 5), indicating that OG1 was not rate limiting.

Morphological reconstruction. In some experiments, recorded GrCs were filled with 0.4% biocytin and identified by immunocytochemistry. To this end, slices were fixed by immersion in 4% paraformaldehyde overnight. Biocytin was revealed with streptavidin-conjugated fluorescein isothiocyanate (HTTC) (Bioys, Compiègne, France) diluted 1:200 or with cyanine 3 diluted 1:200. After three rinses in TBS, slices were mounted on coverslips with SlowFade Probes) in 50% glycerol and secured with nail polish. GrCs were viewed on an LSM 510 META NLO laser-scanning confocal microscope (Zeiss) equipped with a C-Apochromat 63\(\times\)/1.2 objective (Zeiss). The excitation beam of an He/Ne laser (488 nm) and bandpass emission filters (522/35 nm) were used for selective detection of the green or red fluorochrome. Sequential optical sections were taken at 0.5 \(\mu\)m intervals in the z-axis to build an image volume in three dimensions on a personal computer equipped with a single Intel XEON 2.40 GHz processor (Fujitsu Siemens, Bad Homburg, Germany) using Zeiss LSM 510 software.

Results

General properties of GrC physiology and morphology

In this study, we investigated intracellular Ca\(^{2+}\) dynamics and their relationship with long-term synaptic plasticity at the mf–GrC synapse in acute slices from 19- to 23-d-old rat cerebellum. At this age, GrCs have almost concluded their development from a Ca\(^{2+}\)- to Na\(^+\)-dependent firing mode (D’Angelo et al., 1997). Here, we considered only recordings from GrCs displaying a peak Na\(^+\) current of >300 pA during a 40 ms depolarization step from -70 to 0 mV (see Fig. 2C, inset), which is typical of fast Na\(^+\)-spiking GrCs (D’Angelo et al., 1994) (J. Magistretti, L. Castelli, and D’Angelo, unpublished observations). In current clamp, all recorded GrCs indeed showed fast repetitive spike discharge (see Fig. 7). \(C_m\) (2.8 \(\pm\) 0.12 \(\mu\)F; \(n = 40\)) and \(R_m\) (1.74 \(\pm\) 0.17 G0; \(n = 40\)) were in agreement with values reported for mature GrCs (D’Angelo et al., 1997; Cathala et al., 2003). Finally, because GrC development is characterized by a decrease in soma size and dendrite number, we only considered GrCs displaying mature morphological features (Figs. 1, 2).

The fine morphology of GrCs was reconstructed with confocal imaging (Fig. 1) in a representative sample of recordings, in which the pipette-filling solution contained 0.4% biocytin. GrCs had a soma diameter of 7.8 \(\pm\) 0.2 \(\mu\)m and 4.0 \(\pm\) 0.5 (\(n = 7\)) dendrites, in agreement with values reported for mature GrCs (Cathala et al., 2003). The dendrites extended for <25 \(\mu\)m (lower limit for planar projection) and terminated with claw-like structures (dendritic digits), which are characteristic of mature mf–GrC synapses and take part to constitute the cerebellar glomerulus (Jakab and Hamori, 1988). This morphology was also revealed during optical imaging with OG-1, although with lower resolution, allowing a precise localization of the dendritic substructures used for measuring [Ca\(^{2+}\)]\(_i\) changes (Fig. 2A).

Several mechanisms have been identified that could contribute to raise [Ca\(^{2+}\)]\(_i\) in GrCs taking part in the induction of long-term synaptic plasticity. These include NMDA and mGlu receptors, intracellular Ca\(^{2+}\) stores, and VDCCs (D’Angelo et al., 1999; Armano et al., 2000; Maffei et al., 2002; Rossi et al., 2002), as considered below.

[Ca\(^{2+}\)]\(_i\) transients elicited by membrane depolarization and mf stimulation

To measure [Ca\(^{2+}\)]\(_i\), changes, GrCs were loaded with an intracellular solution containing 200 \(\mu\)M OG1 using the whole-cell configuration of the patch-clamp technique. [Ca\(^{2+}\)]\(_i\), changes were first elicited during voltage-clamp recordings by depolarizing GrCs from -70 to 0 mV for 200 ms. In this case, Ca\(^{2+}\) enters through VDCCs, which, in GrCs, open at high threshold (more than -40 mV) (Rossi et al., 1994). [Ca\(^{2+}\)]\(_i\), increased in the dendrites, more evidently in the terminal digits. [Ca\(^{2+}\)]\(_i\), transients

![Figure 3](image-url)
Figure 4. Effect of NMDA-R and mGlu-R1 blockers on \([Ca^{2+}]_i\) transients. We investigated the effect of NMDA-R and mGlu-R1 antagonists on the synaptic \([Ca^{2+}]_i\) transients induced by a 200 ms depolarization from \(-70\) to \(0\) mV or high-frequency mf stimulation (1 s at 100 Hz) while holding GrCs at \(-70\) mV in the absence of extracellular Mg\(^{2+}\). A, In the presence of NMDA-R blockers, mf stimulation was unable to induce any \([Ca^{2+}]_i\) increase, whereas the amplitude of depolarization-induced \([Ca^{2+}]_i\) transients was unaltered on the same GrC. B, Inhibition of mGlu-R1 decreased the maximal amplitude of the \([Ca^{2+}]_i\) response determined by synaptic stimulation compared with that induced by depolarization on the same cell. C, Histograms report the \((\Delta F/F_0)_{\text{max}}\) induced by either depolarization or high-frequency mf stimulation in control conditions and in the presence of NMDA-R antagonists (50 \(\mu M\) APV plus 25 \(\mu M\) 7-Cl-kyn), or mGlu-R1 antagonist (AIDA, 10 \(\mu M\)). Data are reported as mean ± SEM, and statistical differences are indicated: *\(p<0.05\); **\(p<0.01\). In this and subsequent figures, \([Ca^{2+}]_i\) signals are measured in the dendritic endings. Error bars represent SEM.

shown a maximum \(\Delta F/F_0\) amplitude \([^\Delta F/F_0]_{\text{max}}\) of 0.38 ± 0.035 \((n=18)\) in the dendritic endings. The \([Ca^{2+}]_i\), change peaked at the end of the 200 ms stimulus pulse and decayed monotonically with a half width (HW) (duration at half of peak amplitude) of 2.3 ± 0.22 s \((n=18)\). In the soma, \(^{\Delta F/F_0}_{\text{max}}\) averaged 0.06 ± 0.017 \((p<0.001; n=18)\) and was virtually undetectable in at least 75% of cases (data not shown). It should be noted that maximal \([Ca^{2+}]_i\) transients generated by membrane depolarization in voltage clamp showed little variability throughout the different recordings reported in the present paper and have been taken as an internal control for the reliability of recording conditions and GrC \([Ca^{2+}]_i\) regulation.

\([Ca^{2+}]_i\) changes caused by mf synaptic transmission were investigated by delivering 100 Hz, 1 s trains of stimuli. GrCs were maintained under voltage clamp at \(-70\) mV in Mg\(^{2+}\)-free solution, so that NMDA channels were unblocked and could open without activating VDCCs (D’Angelo et al., 1995; Rossi et al., 2002). The \([Ca^{2+}]_i\) increase induced by mf stimulation was high in the dendritic endings \([^\Delta F/F_0]_{\text{max}} = 0.40 ± 0.11\) \((Fig. 2B, C)\) but was barely visible at the somatic level \([^\Delta F/F_0]_{\text{max}} = 0.05 ± 0.02; p<0.05; n=7\). In the same GrCs, at the dendritic endings, depolarization gave \([Ca^{2+}]_i\) transients with \(^{\Delta F/F_0}_{\text{max}}\) of 0.38 ± 0.10 \((n=7)\) \((Fig. 2B, C)\).

Localization of \(Ca^{2+}\) signals

A striking aspect of present recordings is the much stronger intensity of \(Ca^{2+}\) signals in the dendrites than in the soma. On closer inspection, both synthetically and depolarization-evoked \(Ca^{2+}\) transients showed a significant \((p<0.01; n=7)\) progressive decay from the dendritic ending toward the soma \((Fig. 3A, B)\). In the same data set, we compared \([Ca^{2+}]_i\) transients in all dendrites (two to four) visible in the focal plane. Although membrane depolarization elicited well detectable \([Ca^{2+}]_i\) signals in all dendrites \([^\Delta F/F_0]_{\text{max}} > 0.05\), this was the case only for 75% \((15\) of \(20)\) of dendrites during mf stimulation. In the remaining 25% dendrites, there was no detectable fluorescence at all \([^\Delta F/F_0]_{\text{max}} < 0.01\], reflecting failure to activate all of the synapses impinging on a given GrC. The efficiency of mf stimulation \((75%)\) is similar to that revealed in comparable experimental conditions by using quantal analysis \((72.5%)\) (Sola et al., 2004) (D’Angelo and Sola, unpublished results). These results indicated that the effect of synaptic activation on \([Ca^{2+}]_i\) changes in voltage clamp was confined to individual dendrites.

It should also be noted that previous electrotonic analysis revealed that membrane potential decay from the soma to dendritic endings of GrCs during voltage clamp is \(\sim 1\)% when either synaptic channels (D’Angelo et al., 1995) or VDCCs (Rossi et al., 1994) open in the dendritic endings. This is attributable to the
fact that GrCs are electrically compact, with an electrotonic length of just 0.04 (Silver et al., 1992; D’Angelo et al., 1993). In addition, present recordings were performed in the absence of extracellular Mg$^{2+}$; therefore, voltage sensitivity of NMDA channels was abolished. Thus, it is extremely unlikely that Ca$^{2+}$ transient decay along the dendrite reflects a membrane potential gradient. These observations support a regional localization of Ca$^{2+}$ signaling as reported in other central neurons in situ (Svoboda et al., 1996; Sabatini et al., 2001, 2002; Augustine et al., 2003; Goldberg et al., 2003).

The role of NMDA-Rs and mGlu-Rs in [Ca$^{2+}$]$_i$ changes

The relative contribution of NMDA-Rs and mGlu-Rs in the initiation of synaptic Ca$^{2+}$ signals during repetitive mf stimulation (D’Angelo et al., 1999; Armano et al., 2000; Maffei et al., 2002) was evaluated using the same recording approach shown in Figure 2. We investigated the effect of NMDA-R (50 μM APV plus 25 μM 7-CI-kyn) and mGlu-R1 (10 μM AIDA) antagonists on synaptic [Ca$^{2+}$]$_i$ transients induced by either high-frequency mf stimulation (1 s at 100 Hz) at −70 mV or a 200 ms depolarization from −70 to 0 mV in Mg$^{2+}$-free solution (Fig. 4). On one hand, in the presence of NMDA-R blockers, mf stimulation was unable to elicit a remarkable [Ca$^{2+}$]$_i$ increase (in three cases the response was virtually undetectable), whereas the amplitude of depolarization-induced [Ca$^{2+}$]$_i$ transients was unaltered [depolarization, (∆F/ ∆F$_{0}$)$_{max}$ = 0.40 ± 0.07; mf stimulation, (∆F/ ∆F$_{0}$)$_{max}$ = 0.07 ± 0.04; n = 6; p < 0.001]. On the other hand, inhibition of mGlu-R1 significantly decreased, but did not abolish, the maximal amplitude of the [Ca$^{2+}$]$_i$ response determined by synaptic stimulation; in addition, in this case, the amplitude of depolarization-induced [Ca$^{2+}$]$_i$ transients was unaltered [depolarization, (∆F/ ∆F$_{0}$)$_{max}$ = 0.42 ± 0.06; mf stimulation, (∆F/ ∆F$_{0}$)$_{max}$ = 0.30 ± 0.09; n = 5; p < 0.05]. When the different groups of experiments were compared, inhibition of NMDA-R and mGlu-R1 significantly reduced [Ca$^{2+}$]$_i$ responses by 82.5% (p < 0.01; unpaired t test) and 25.1% (p < 0.05; unpaired t test) compared with controls (Fig. 4C). These results show that mGlu-Rs are not able to elicit a remarkable [Ca$^{2+}$]$_i$ increase but can potentiate the response triggered by NMDA-R activation.

The role of intracellular stores in [Ca$^{2+}$]$_i$ changes

The contribution of intracellular stores to Ca$^{2+}$ signaling was assessed by preincubating slices for 30 min with 500 μM thapsigargin, an inhibitor of sarcoplasmic/endoplasmic reticulum Ca$^{2+}$ ATPase (Fig. 3). The [Ca$^{2+}$]$_i$ transient induced by a 200 ms depolarization from −70 to 0 mV was significantly reduced in amplitude [(∆F/ ∆F$_{0}$)$_{max}$ = 0.38 ± 0.04; n = 18; p < 0.01; unpaired t test], and it was curtailed (HW, 1.62 ± 0.25 s; thapsigargin, n = 10; HW, 2.59 ± 0.26 s; control, n = 18; p < 0.05; unpaired t test). The corresponding area under the curve (AUC) was therefore dramatically reduced [AUC, 481 ± 110 ms; thapsigargin, n = 9; AUC, 1141 ± 140 ms; control, n = 18; p < 0.01; unpaired t test]. These results indicate a major role of Ca$^{2+}$ stores in the amplification and protraction of the [Ca$^{2+}$]$_i$ signal in GrC dendrites. This experiment was not repeated during synaptic transmission because intracellular stores can also affect neurotransmitter release during repetitive stimulation (Empetage et al., 2001).

Efficiency of theta-burst patterns in determining [Ca$^{2+}$]$_i$ changes

In addition to continuous stimulation (Fig. 2C), TBS is a protocol commonly used to induce long-term synaptic plasticity. We in-
investigated $[Ca^{2+}]_i$ changes induced by TBS in voltage-clamp recordings mimicking high-frequency pairing used for mf–GrC LTP induction in previous works (D’Angelo et al., 1999; Armano et al., 2000; Rossi et al., 2002). GrCs were maintained at -70 mV, and membrane potential was stepped to -40 mV during 100 ms, 100 Hz mf bursts repeated every 250 ms with an extracellular solution containing 1.2 mM Mg$^{2+}$.

TBS raised $[Ca^{2+}]_i$, close to the level attained by 1 s, 100 Hz continuous stimulation ($n = 4$) (Fig. 6A). Moreover, repeating the TBS twice with a 2 s interval, as is often done in LTP induction experiments, resulted in a protracted $[Ca^{2+}]_i$, elevation. The second TBS caused a significant facilitation of the $[Ca^{2+}]_i$ signal $[(\Delta F/F_o)_{\text{max}}]/(\Delta F/F_o)_{\text{max}} = 1.49 \pm 0.12; n = 4; p < 0.05]$. No comparable facilitation was observed with 200 ms depolarizing pulses from -70 to 0 mV $(\Delta F/F_o)_{\text{max}} = 1.13 \pm 0.04; n = 4)$, presumably reflecting faster decay and weaker temporal summation of Ca^{2+} transients. $[Ca^{2+}]_i$ changes caused by continuous stimulation and TBS are compared in Figure 6B, showing that TBS can efficiently elevate $[Ca^{2+}]_i$.

The effect of burst duration on $[Ca^{2+}]_i$ changes

Mfs are known to discharge in repetitive bursts of variable length and frequency (Kase et al., 1980; Szwed et al., 2003; Chadderton et al., 2004). To investigate the impact of mf bursts on $[Ca^{2+}]_i$ changes, we maintained GrCs in current clamp, mimicking conditions used during the induction of synaptic plasticity with an extracellular solution containing 1.2 mM Mg$^{2+}$. The initial membrane potential was set between -70 and -55 mV with constant current injection, so that mf stimulation bursts elicited repetitive action potential discharge (40.8 \pm 4.4 Hz; $n = 25$) (Armano et al., 2000). $[Ca^{2+}]_i$ changes were measured in the dendrite showing the most prominent fluorescence change to exclude nonsynaptically activated dendrites (see below). Application of 1–100 repetitive stimuli at 100 Hz, corresponding to 10–1000 ms bursts, revealed a progressive $[Ca^{2+}]_i$, increase tending to plateau with trains lasting ≥ 500 ms (Fig. 7A, B).

Differently from voltage-clamp recordings, synaptic activation could induce membrane depolarization and $[Ca^{2+}]_i$ changes mediated by VDCCs also in dendrites that were not activated by glutamate released at the corresponding mossy fiber. The effect of spike discharge on $[Ca^{2+}]_i$ was investigated in isolation by delivering 800 ms depolarization from the initial membrane potential of -70 mV (D’Angelo et al., 1995, 1998). Depolarizing currents elicited repetitive spike discharge at 47.2 \pm 9.3 Hz ($n = 4$) (Fig. 7C), and, as well as with recordings obtained in voltage clamp, depolarization-evoked $[Ca^{2+}]_i$ changes occurred in all visible dendrites (Fig. 7C). The maximum $[Ca^{2+}]_i$ increase at the end of 800 ms stimuli was $(\Delta F/F_o)_{\text{max}} = 0.077 \pm 0.03 (n = 4)$, indicating activation of a fraction of the total VDCC current. The $[Ca^{2+}]_i$ change caused by VDCCs was remarkably smaller and could not be confused with that determined by mf bursts of corresponding length (Fig. 7B).

These results, in conjunction with those shown in Figures 2 and 6, show that short bursts such as those generated by single tactile stimuli (Szwed et al., 2003; Chadderton et al., 2004) determine a sizeable dendritic $[Ca^{2+}]_i$ increase, which is remarkably amplified by burst repetition or prolongation. Moreover, GrC firing contributes to elevating $[Ca^{2+}]_i$ through VDCCs also in the dendrites that are not synaptically stimulated.

The effect of burst duration on synaptic plasticity

NMDA-R-dependent Ca$^{2+}$-dependent long-term potentiation has been reported at the mf–GrC relay after high-frequency repetitive mf stimulation (D’Angelo et al., 1999; Armano et al., 2000; Maffei et al., 2002, 2003; Sola et al., 2004). However, no systematic investigation of the conditions leading to LTP or to the potential generation of LTD were performed. Here, we report the effect of stimulation paradigms identical to those used for investigating $[Ca^{2+}]_i$ dynamics in Figure 7 (mf bursts elicited repetitive action potential discharge at 36.9 \pm 4.4 Hz; $n = 23$), with the aim of establishing a correlation among mf activity, synaptic plasticity, and the biochemical mechanisms involved.

At low frequency (0.1 Hz), EPSCs did not show apparent changes in their amplitude along recordings. Application of a single 100 Hz burst of duration ranging from 100 to 1000 ms in current clamp revealed a characteristic plasticity profile. Figure 8A shows the time course of LTD induced by a 100 ms burst and of LTP induced by a 1000 ms burst. The EPSC changes persisted until the end of the recordings (up to 60 min in three LTD and four LTP recordings; data not shown). Figure 8B shows the scatter of EPSC changes measured near steady state for bursts of different duration. Burst duration determined the probability of
Inducing LTP rather than LTD, with LTD being much more probable at 100 ms and LTP at 1000 ms. LTD and LTP were equally probable at 250 ms. On average, 100 ms bursts (10 pulses) caused LTD, 250 ms bursts (25 pulses) did not cause any net plasticity, and 500–1000 ms bursts (50–100 pulses) determined LTP (Fig. 8C).

The relationship between synaptic plasticity and \([Ca^{2+}]_{i}\), is shown in Figure 9A. The plot shows a BCM-like shape, with no changes at very low \([Ca^{2+}]_{i}\), LTD for moderate \([Ca^{2+}]_{i}\), and, after a neutral point, LTP at relatively high \([Ca^{2+}]_{i}\). Figure 9B summarizes previous observations, which, a posteriori, would suggest the existence of bidirectional plasticity in field (Maffei et al., 2000), voltage-clamp (D’Angelo et al., 1999), or current-clamp recordings (Armano et al., 2000).

Discussion

In this paper, we provide the first analysis of \([Ca^{2+}]_{i}\) regulation in GrCs during synaptic transmission. \([Ca^{2+}]_{i}\), dynamics measured in the dendrites were determined by multiple mechanisms involving NMDA-Rs, mGlu-Rs, VDCCs, and intracellular \(Ca^{2+}\) stores. The major finding is that burst patterns related to native mf discharge determine the balance between LTP and LTD through postsynaptic \([Ca^{2+}]_{i}\), regulation.

GrCs investigated using confocal microscopy showed a typical morphology with a small spherical soma emitting an average of four short dendrites terminating with two to four digitiform endings. This morphology corresponded to that reported using Golgi staining and electron microscopy (Eccles et al., 1967; Palay and Chan-Palay, 1974; Jakab and Hamori, 1988). Fluorescent \(Ca^{2+}\) imaging showed that \([Ca^{2+}]_{i}\) increase determined by membrane depolarization or mf stimulation was confined to dendrites.

Moreover, synaptically driven \([Ca^{2+}]_{i}\) increase could be observed in a fraction of the dendrites responding to membrane depolarization, implying regional segregation of \(Ca^{2+}\) signaling. Local \(Ca^{2+}\) control by synaptic stimuli is commonly observed in spines and smooth dendrites of pyramidal neurons (Svoboda et al., 1996; Sabatini et al., 2001, 2002; Augustine et al., 2003; Goldberg et al., 2003). \(Ca^{2+}\) signals observed in the soma of GrCs in culture (Irving et al., 1992a,b; del Rio et al., 1999; Masgrau et al., 2001) may reflect different recording or cellular conditions, as well as the massive, protracted nonlocalized stimulation caused by bath perfusion of high-K\(^+\) solutions or glutamate receptor agonists.

The response to depolarization and mf stimulation revealed the action of the three main \([Ca^{2+}]_{i}\), regulatory mechanisms of the GrC membrane. Membrane depolarization activated high-threshold VDCCs (Rossi et al., 1994). Glutamate released by mf discharge activated NMDA-Rs and mGlu-Rs (D’Angelo et al., 1993, 1995; Rossi et al., 1996). NMDA-Rs are permeable to \(Ca^{2+}\), and mGlu-Rs probably act through the IP\(_3\) pathway, which is effectively stimulated by glutamate in GrCs (del Rio et al., 1999; Masgrau et al., 2001; Monti et al., 2002). During repetitive synaptic transmission, the main contribution to \([Ca^{2+}]_{i}\), was given by NMDA-R, whereas mGlu-R1 could play an amplifying role (Finch et al., 1991; Irving et al., 1992b), explaining the need for NMDA-R and mGlu-R coactivation in mf–GrC LTP induction (Rossi et al., 1996; D’Angelo et al., 1999; Maffei et al., 2002). \(Ca^{2+}\) entry through VDCCs, by signaling membrane depolarization and repetitive spike discharge (Armano et al., 2000), could also favor mf–GrC LTP. \(Ca^{2+}\) signals were remarkably amplified and protracted by \(Ca^{2+}\)-induced \(Ca^{2+}\) release (CICR), as indicated by the effect of thapsigargin (and also observed in GrC culture) (Irving et al., 1992a,b; Simpson et al., 1996), suggesting that CICR plays a critical role in the induction of long-term plasticity (Nishiyama et al., 2000) at the mf–GrC synapse. It should be noted that GrC \([Ca^{2+}]_{i}\), regulatory mechanisms could be differently engaged, depending on mf–GrC operating conditions. \(Ca^{2+}\) entry through NMDA channels can be regulated by factors controlling membrane depolarization, especially Golgi cell inhibition and mf number, discharge frequency, and correlation. \(Ca^{2+}\) release through the IP\(_3\) pathway is solely regulated by mGlu receptor activation and may therefore be sensitive to burst duration and frequency. Finally, \(Ca^{2+}\) entry through VDCCs, which activate during the action potential upstroke (D’Angelo et al., 1997, 1998), signals GrC discharge. Thus, as at other central synapses (Jaffe and Brown, 1994; Yang et al., 1999; Nishiyama et al., 2000; Cho et al., 2001; Cornier et al., 2001), GrC dendrites are endowed with \(Ca^{2+}\) regulation systems appropriate for detecting the coincidence of presynaptic and postsynaptic activity and for controlling bidirectional plasticity. It should be noted that \([Ca^{2+}]_{i}\), signaling has also been investigated in the presynaptic terminals that parallel fibers (the granule cell axons) form in the molecular layer with Purkinje cells [see study by Dittman et al. (2003) and references therein]. In parallel fiber terminals, \(Ca^{2+}\)
influx is regulated by VDCCs and (probably) presynaptic NMDA receptors controlling short-term release dynamics and parallel fiber–Purkinje cell LTD (Casado et al., 2002).

MF activity caused a [Ca\(^{2+}\)]\(_i\) increase raising sharply with burst duration, and long-term synaptic plasticity was clearly correlated with the duration of stimulus trains through [Ca\(^{2+}\)]\(_i\). The plasticity/[Ca\(^{2+}\)]\(_i\) curve resembled the BCM learning rule (Bienenstock et al., 1982) (Fig. 9A), with no changes with isolated stimuli, LTD with a single short burst (100 ms), and, after a neutral point, LTP with a longer burst (>500 ms). In the region extending from 100 to 500 ms, the plasticity/[Ca\(^{2+}\)]\(_i\) curve approximated a simple covariance rule (Stanton and Sejnowski, 1989). Repetition of 100 ms bursts in TBS sequences also yielded nearly maximal [Ca\(^{2+}\)]\(_i\), and caused saturating LTP (Armano et al., 2000; Rossi et al., 2002). This result suggests that the double-threshold hypothesis developed for hippocampal synapses (Mulkey and Malenka, 1992; Artola and Singer, 1993), in which moderate Ca\(^{2+}\) levels activate phosphatases leading to LTD, whereas high Ca\(^{2+}\) levels activate kinases leading to LTP (Lisman, 1989, 2001; Kevin and Sejnowski, 2002; Söström and Nelson, 2002), could also be appropriate for the mf–GrC synapse. Interestingly, bidirectional plasticity was also revealed at other cerebellar synapses (for review, see Hansel et al., 2001). For instance, in parallel fiber–Purkinje cell LTD, large [Ca\(^{2+}\)]\(_i\) signals are generated by P-type channel activation during complex spikes caused by the climbing fiber and are reinforced by mGluR1 signaling through IP\(_3\) receptors and nitric oxide (NO) release caused by parallel fibers. The absence of climbing fiber activity and weak [Ca\(^{2+}\)]\(_i\) signals cause LTP, demonstrating heterosynaptic bidirectional plasticity implementing a reverse BCM rule (Coensmans et al., 2004). In addition to this, a presynaptic AMPA-dependent and a postsynaptic NO-dependent form of parallel fiber–Purkinje cell LTD have been observed (Lev-Ram et al., 2002). In deep cerebellar nuclear cells, bidirectional plasticity depends on the intensity of T-type channel activation during the rebound depolarization after Purkinje cell inhibition (Aizenman et al., 1998).

MF bursts typically last 50–150 ms (Chadderton et al., 2004) and can recur in theta patterns during active sensation, e.g., during whisking (Szewd et al., 2003). It is therefore expected that sporadic stimuli either are ineffective or cause LTD, whereas those related to purposeful active sensation determine LTP. MFs are also capable of relaying frequency-modulated signals, e.g., during eye movements (Kase et al., 1980). The sensitivity of [Ca\(^{2+}\)]\(_i\), changes and synaptic plasticity to different input frequencies remains to be investigated. The present result also allows the interpretation of previously unexplained observations (Fig. 9B), in which persistent bidirectional changes in synaptic strength followed manipulations of postsynaptic depolarization (Armano et al., 2000), Golgi cell inhibition (Maffei et al., 2002), or intracellular Ca\(^{2+}\) buffering (D’Angelo et al., 1999).

In conclusion, mf input bursts can be efficiently translated into GrC [Ca\(^{2+}\)]\(_i\) changes allowing synapse-specific bidirectional long-term synaptic plasticity. Although Ca\(^{2+}\) signals determined by glutamate receptor activation are confined to individual dendrites, membrane potential is homogeneously distributed because of the high electrotonic compactness of GrCs (Silver et al., 1992; D’Angelo et al., 1993, 1995). Thus, whether an mf–GrC synapse develops LTP or LTD will depend on local glutamate receptor activation and global membrane potential control re-

Irving AJ, Collingridge GL, Schofield JG (1992a) \(\gamma\)-glutamate and acetylcholine mobilise Ca\(^{2+}\) from the same intracellular pool in cerebellar granule cells using transduction mechanisms with different Ca\(^{2+}\) sensitivities. Cell Calcium 13:293–301.

Lisman JE (2001) Three Ca\(^{2+}\) levels affect plasticity differently: the LTP zone, the LTD zone and no man’s land. J Physiol (Lond) 532:285.

